1. |
Klein GR, Parvizi J, Rapuri VR, et al. The effect of tibial polyethylene insert design on range of motion: evaluation of in vivo knee kinematics by a computerized navigation system during total knee arthroplasty. J Arthroplasty, 2004, 19(8): 986-991.
|
2. |
Sikorski JM. Alignment in total knee replacement. J Bone Joint Surg (Br), 2008, 90(9): 1121-1127.
|
3. |
Mason JB, Fehring TK, Estok R, et al. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty, 2007, 22(8): 1097-1106.
|
4. |
王波, 胡海涛, 潘健, 等. 膝关节骨性关节炎全膝关节置换术后下肢力线与早期临床效果关系的研究. 中国骨与关节损伤杂志, 2015, 30(10): 1044-1048.
|
5. |
Schotanus MGM, Boonen B, van der Weegen W, et al. No difference in mid-term survival and clinical outcome between patient-specific and conventional instrumented total knee arthroplasty: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc, 2019, 27(5): 1463-1468.
|
6. |
Martijn S, Elke T, Marion H, et al. Favourable alignment outcomes with MRI-based patient-specific instruments in total knee arthroplasty. Knee Surgery Sports Traumatology Arthroscopy, 2018, 26(9).
|
7. |
Wu XD, Xiang BY, Schotanus M, et al. CT- versus MRI-based patient-specific instrumentation for total knee arthroplasty: A systematic review and meta-analysis. Surgeon, 2017, 15(6): 336-348.
|
8. |
An VV, Sivakumar BS, Phan K, et al. Accuracy of MRI-based vs. CT-based patient-specific instrumentation in total knee arthroplasty: A meta-analysis. J Orthop Sci, 2017, 22(1): 116-120.
|
9. |
邱冰, 张明娇, 唐本森, 等. 基于 3D 打印个性化手术导航模板辅助下的人工全膝关节置换. 中国组织工程研究, 2015, (48): 7731-7735.
|
10. |
Gromov K, Korchi M, Thomsen MG, et al. What is the optimal alignment of the tibial and femoral components in knee arthroplasty? Acta Orthop, 2014, 85(5): 480-487.
|
11. |
吴昊, 查振刚, 熊高鑫, 等. 全膝关节置换术中精确截骨的疗效观察. 暨南大学学报 (自然科学与医学版), 2010, 31(2): 178-181, 185.
|
12. |
Fitzgerald SJ, Trousdale RT. Why knees fail in 2011: patient, surgeon, or device? Orthopedics, 2011, 34(9): e513-515.
|
13. |
王志为, 温亮, 于洋, 等. 个性化截骨工具辅助下运动学对线全膝关节置换的早期临床结果. 中华外科杂志, 2020, 58(6): 457-463.
|
14. |
Daniilidis K, Tibesku CO. Frontal plane alignment after total knee arthroplasty using patient-specific instruments. Int Orthop, 2013, 37(1): 45-50.
|
15. |
Heyse TJ, Tibesku CO. Improved tibial component rotation in TKA using patient-specific instrumentation. Arch Orthop Trauma Surg, 2015, 135(5): 697-701.
|
16. |
Boonen B, Schotanus MG, Kerens B, et al. Intra-operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomised controlled trial. Knee Surg Sports Traumatol Arthrosc, 2013, 21(10): 2206-2212.
|
17. |
Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C. A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J, 2013, 95-B(3): 354-359.
|
18. |
刘帅, 姚庆强, 田书畅, 等. 3D 打印截骨槽导板与定位钉导板在全膝关节置换术中的对比研究. 中国骨与关节杂志, 2017, 6(5): 334-339.
|
19. |
Roh YW, Kim TW, Lee S, et al. Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res, 2013, 471(12): 3988-3995.
|
20. |
Kotela A, Lorkowski J, Kucharzewski M, et al. Corrigendum to “patient-specific CT-based instrumentation versus conventional instrumentation in total knee arthroplasty: a prospective randomized controlled study on clinical outcomes and in-hospital data”. Biomed Res Int, 2018, 2018: 6723963.
|
21. |
Kotela A, Lorkowski J, Kucharzewski M, et al. Patient- specific CT-based instrumentation versus conventional instrumentation in total knee arthroplasty: a prospective randomized controlled study on clinical outcomes and in-hospital data. Biomed Res Int, 2015, 2015: 165908.
|
22. |
Kim YH, Park JW, Kim JS, et al. The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis. Int Orthop, 2014, 38(2): 379-385.
|
23. |
Church JS, Scadden JE, Gupta RR, et al. Embolic phenomena during computer-assisted and conventional total knee replacement. J Bone Joint Surg (Br), 2007, 89(4): 481-485.
|
24. |
Heyse TJ, Haas SB, Drinkwater D, et al. Intraarticular fibrinogen does not reduce blood loss in TKA: a randomized clinical trial. Clin Orthop Relat Res, 2014, 472(1): 272-276.
|
25. |
Mihalko WM, Boyle J, Clark LD, et al. The variability of intramedullary alignment of the femoral component during total knee arthroplasty. J Arthroplasty, 2005, 20(1): 25-28.
|
26. |
戴繁林, 胡立新, 王小武, 等. 全膝关节置换术中股骨假体矢状面置入角度与假体中远期磨损的相关性研究. 中国骨与关节损伤杂志, 2019, 34(8): 796-799.
|
27. |
Leo P, Martin M, Georg B, et al. Patient-specific instrumentation improved three-dimensional accuracy in total knee arthroplasty: a comparative radiographic analysis of 1257 total knee arthroplasties. J Orthop Surg Res, 2019, 14(10): 437.
|
28. |
Voleti PB, Hamula MJ, Baldwin KD, et al. Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty. J Arthroplasty, 2014, 29(9): 1709-1712.
|
29. |
Gong S, Xu W, Wang R, et al. Patient-specific instrumentation improved axial alignment of the femoral component, operative time and perioperative blood loss after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1083-1095.
|
30. |
余进伟, 郭甲瑞, 陈旭, 等. 3D 打印模板辅助关节置换治疗膝骨关节炎的前瞻性研究. 实用骨科杂志, 2018, 24(9): 782-785, 836.
|
31. |
王向东, 韩萍, 赵虎, 等. 腕关节多层螺旋 CT 扫描参数、图像质量和辐射剂量的关系. 解剖学报, 2010, 41(6): 905-908.
|
32. |
White D, Chelule KL, Seedhom BB. Accuracy of MRI vs CT imaging with particular reference to patient specific templates for total knee replacement surgery. Int J Med Robot, 2008, 4(3): 224-231.
|
33. |
Ensini A, Timoncini A, Cenni F, et al. Intra- and post-operative accuracy assessments of two different patient-specific instrumentation systems for total knee replacement. Knee Surg Sports Traumatol Arthrosc, 2014, 22(3): 621-629.
|