1. |
Gerhard EM, Wang W, Li C, et al. Design strategies and applications of nacre-based biomaterials. Acta Biomater, 2017, 54: 21-34.
|
2. |
Jazayeri HE, Tahriri M, Razavi M, et al. A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 1): 913-929.
|
3. |
Li S, Xu Y, Yu J, et al. Enhanced osteogenic activity of poly (ester urea) scaffolds using facile post-3D printing peptide functionalization strategies. Biomaterials, 2017, 141: 176-187.
|
4. |
He B, Zhao J, Ou Y, et al. Biofunctionalized peptide nanofiber-based composite scaffolds for bone regeneration. Mater Sci Eng C Mater Biol Appl, 2018, 90: 728-738.
|
5. |
Wang Z, Chen L, Wang Y, et al. Improved cell adhesion and osteogenesis of op-HA/PLGA composite by poly (dopamine)-assisted immobilization of collagen mimetic peptide and osteogenic growth peptide. ACS Appl Mater Interfaces, 2016, 8(40): 26559-26569.
|
6. |
Li Y, Luo Z, Xu X, et al. Aspirin enhances the osteogenic and anti-inflammatory effects of human mesenchymal stem cells on osteogenic BFP-1 peptide-decorated substrates. J Mater Chem B, 2017, 5(34): 7153-7163.
|
7. |
Eckhart KE, Holt BD, Laurencin MG, et al. Covalent conjugation of bioactive peptides to graphene oxide for biomedical applications. Biomater Sci, 2019, 7(9): 3876-3885.
|
8. |
Liao J, Wu S, Li K, et al. Peptide-modified bone repair materials: Factors influencing osteogenic activity. J Biomed Mater Res A, 2019, 107(7): 1491-1512.
|
9. |
Mohammadi M, Alibolandi M, Abnous K, et al. Fabrication of hybrid scaffold based on hydroxyapatite-biodegradable nanofibers incorporated with liposomal formulation of BMP-2 peptide for bone tissue engineering. Nanomedicine, 2018, 14(7): 1987-1997.
|
10. |
Wang CY, Cao GX, Zhao TX, et al. Terminal group modification of carbon nanotubes determines covalently bound osteogenic peptide performance. ACS Biomater Sci Eng, 2020, 6(2): 865-878.
|
11. |
Wang S, Zhao Z, Yang Y, et al. A high-strength mineralized collagen bone scaffold for large-sized cranial bone defect repair in sheep. Regen Biomater, 2018, 5(5): 283-292.
|
12. |
Hokugo A, Sorice S, Parhami F, et al. A novel oxysterol promotes bone regeneration in rabbit cranial bone defects. J Tissue Eng Regen Med, 2016, 10(7): 591-599.
|
13. |
Costa F, Carvalho IF, Montelaro RC, et al. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater, 2011, 7(4): 1431-1440.
|
14. |
Wang J, Fang T, Li M, et al. Intracellular delivery of peptide drugs using viral nanoparticles of bacteriophage P22: covalent loading and cleavable release. J Mater Chem B, 2018, 6(22): 3716-3726.
|
15. |
King WJ, Krebsbach PH. Growth factor delivery: how surface interactions modulate release in vitro and in vivo. Adv Drug Deliv Rev, 2012, 64(12): 1239-1256.
|
16. |
Shuai C, Liu T, Gao C, et al. Mechanical reinforcement of diopside bone scaffolds with carbon nanotubes. Int J Mol Sci, 2014, 15(10): 19319-19329.
|
17. |
Mikael PE, Amini AR, Basu J, et al. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Biomed Mater, 2014, 9(3): 035001.
|
18. |
Xu J, Hu X, Jiang S, et al. The application of multi-walled carbon nanotubes in bone tissue repair hybrid scaffolds and the effect on cell growth in vitro. Polymers (Basel), 2019, 11(2): 230.
|
19. |
Luo F, Pan L, Hong G, et al. In vitro and in vivo characterization of multi-walled carbon nanotubes/polycaprolactone composite scaffolds for bone tissue engineering applications. J Biomater Tissue Eng, 2017, 7(9): 787-797.
|
20. |
Curran JM, Chen R, Hunt JA. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials, 2005, 26(34): 7057-7067.
|
21. |
Kikuchi A, Taira H, Tsuruta T, et al. Adsorbed serum protein mediated adhesion and growth behavior of bovine aortic endothelial cells on polyamine graft copolymer surfaces. J Biomater Sci Polym Ed, 1996, 8(2): 77-90.
|
22. |
Wilson CJ, Clegg RE, Leavesley DI, et al. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng, 2005, 11(1-2): 1-18.
|
23. |
Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J Biomed Mater Res Part A, 2003, 66(2): 247-259.
|
24. |
Li X, Liu H, Niu X, et al. The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials, 2012, 33(19): 4818-4827.
|
25. |
Pahlevanzadeh F, Bakhsheshi-Rad HR, Ismail AF, et al. Development of PMMA-Mon-CNT bone cement with superior mechanical properties and favorable biological properties for use in bone-defect treatment. Mater Lett, 2019, 240: 9-12.
|
26. |
Pan WY, Xiao X, Li JL, et al. The comparison of biocompatibility and osteoinductivity between multi-walled and single-walled carbon nanotube/PHBV composites. J Mater Sci-Mater Med, 2018, 29(12): 189.
|
27. |
Shrestha BK, Shrestha S, Tiwari AP, et al. Bio-inspired hybrid scaffold of zinc oxide-functionalized multi-wall carbon nanotubes reinforced polyurethane nanofibers for bone tissue engineering. Mater Des, 2017, 133: 69-81.
|
28. |
Rahimi Z, Zinatizadeh AAL, Zinadini S. Preparation of high antibiofouling amino functionalized MWCNTs/PES nanocomposite ultrafiltration membrane for application in membrane bioreactor. J Ind Eng Chem, 2015, 29: 366-374.
|
29. |
Usui Y, Aoki K, Narita N, et al. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small, 2008, 4(2): 240-246.
|
30. |
Du Z, Wang C, Zhang R, et al. Applications of graphene and its derivatives in bone repair: Advantages for promoting bone formation and providing real-time detection, challenges and future prospects. Int J Nanomedicine, 2020, 15: 7523-7551.
|
31. |
彭双麟, 姚志浩, 罗道文, 等. 多孔双相磷酸钙陶瓷修复骨质疏松症大鼠颅骨极量缺损的实验研究. 口腔医学研究, 2019, 35(4): 377-381.
|
32. |
宫玮玉, 刘绍清, 董艳梅, 等. 纳米生物活性玻璃促进兔颅骨临界骨缺损修复. 北京大学学报 (医学版), 2018, 50(1): 42-48.
|
33. |
Moncal KK, Aydin RST, Abulaban M, et al. Collagen-infilled 3D printed scaffolds loaded with miR-148b-transfected bone marrow stem cells improve calvarial bone regeneration in rats. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110128.
|