1. |
Kosven AM. On complicated fractures of the spine. Ortop Travmatol Protez, 1965, 26: 56-58.
|
2. |
罗鹏刚, 金大地, 吴增志, 等. 经皮与开放椎弓根螺钉系统治疗多节段胸腰椎骨折: 置钉准确率对比. 中国组织工程研究, 2018, 22(7): 1050-1055.
|
3. |
张文志, 方诗元, 胡业丰, 等. 多节段胸腰椎脊柱骨折的手术治疗. 临床骨科杂志, 2007, 10(3): 227-228.
|
4. |
Korres DS, Boscainos PJ, Papagelopoulos PJ, et al. Multiple level noncontiguous fractures of the spine. Clin Orthop Relat Res, 2003, (411): 95-102.
|
5. |
Chang J, Cao J, Huang Z, et al. Comparison of the modified Wiltse’s approach with spinal minimally invasive system and traditional approach for the therapy of thoracolumbar fracture. J Biomed Res, 2020, 34(5): 379-386.
|
6. |
杨标, 田素魁, 肖飞, 等. 经皮椎弓根螺钉治疗多节段非相邻型胸腰椎骨折. 临床骨科杂志, 2020, 23(1): 16-19.
|
7. |
Oh HS, Seo HY. Percutaneous pedicle screw fixation in thoracolumbar fractures: Comparison of results according to implant removal time. Clin Orthop Surg, 2019, 11(3): 291-296.
|
8. |
Wu C, Deng J, Li T, et al. Percutaneous pedicle screw placement aided by a new drill guide template combined with fluoroscopy: An accuracy study. Orthop Surg, 2020, 12(2): 471-479.
|
9. |
吴超, 谭伦, 林旭, 等. 经皮个体化导航模板辅助微创椎弓根螺钉内固定治疗胸腰椎骨折. 临床骨科杂志, 2017, 20(3): 262-267, 271.
|
10. |
于凌佳, 孟海, 杨雍, 等. 国产“天玑”骨科机器人辅助微创椎弓根钉置入的新技术报道. 临床和实验医学杂志, 2020, 19(14): 1514-1518.
|
11. |
Yang JS, He B, Tian F, et al. Accuracy of robot-assisted percutaneous pedicle screw placement for treatment of lumbar spondylolisthesis: A comparative cohort study. Med Sci Monit, 2019, 25: 2479-2487.
|
12. |
茅剑平, 李祖昌, 范明星, 等. 机器人辅助与徒手椎弓根螺钉置入在胸腰椎骨折手术中的精度及手术即时效果的比较. 中国微创外科杂志, 2020, 26(6): 534-539.
|
13. |
赵经纬, 何达, 韦祎, 等. 机器人辅助开放与微创入路胸腰椎骨折内固定手术的对比观察. 骨科临床与研究杂志, 2020, 5(4): 202-207.
|
14. |
Schnake KJ, Schroeder GD, Vaccaro AR, et al. AOSpine Classification Systems (Subaxial, Thoracolumbar). J Orthop Trauma, 2017, 31 Suppl 4: S14-S23.
|
15. |
唐三元. 多节段脊柱骨折. 中华创伤骨科杂志, 2007, 9(3): 281-284.
|
16. |
Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976), 1990, 15(1): 11-14.
|
17. |
Li Z, Xu D, Li F, et al. Design and application of a novel patient-specific 3D printed drill navigational guiding template in percutaneous thoracolumbar pedicle screw fixation: A cadaveric study. J Clin Neurosci, 2020, 73: 294-298.
|
18. |
Zhang M, Li J, Fang T, et al. Evaluation of a three-dimensional printed guide and a polyoxymethylene thermoplastic regulator for percutaneous pedicle screw fixation in patients with thoracolumbar fracture. Med Sci Monit, 2020, 26: e920578.
|
19. |
Yu C, Ou Y, Xie C, et al. Pedicle screw placement in spinal neurosurgery using a 3D-printed drill guide template: a systematic review and meta-analysis. J Orthop Surg Res, 2020, 15(1): 1. doi: 10.1186/s13018-019-1510-5.
|
20. |
Gao S, Lv Z, Fang H. Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials. Eur Spine J, 2018, 27(4): 921-930.
|
21. |
Yoshida G, Sato K, Kanemura T, et al. Accuracy of percutaneous lumbosacral pedicle screw placement using the oblique fluoroscopic view based on computed tomography evaluations. Asian Spine J, 2016, 10(4): 630-638.
|
22. |
Yang P, Chen K, Zhang K, et al. Percutaneous short-segment pedicle instrumentation assisted with O-arm navigation in the treatment of thoracolumbar burst fractures. J Orthop Translat, 2019, 21: 1-7.
|
23. |
Ohba T, Ebata S, Fujita K, et al. Percutaneous pedicle screw placements: accuracy and rates of cranial facet joint violation using conventional fluoroscopy compared with intraoperative three-dimensional computed tomography computer navigation. Eur Spine J, 2016, 25(6): 1775-1780.
|