1. |
Arthur A, Gronthos S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int J Mol Sci, 2020, 21(24): 9759. doi: 10.3390/ijms21249759.
|
2. |
Le H, Xu W, Zhuang X, et al. Mesenchymal stem cells for cartilage regeneration. J Tissue Eng, 2020, 11: 1-22.
|
3. |
Barckhausen C, Rice B, Baila S, et al. GMP-compliant expansion of clinical-grade human mesenchymal stromal/stem cells using a closed hollow fiber bioreactor. Methods Mol Biol, 2016, 1416: 389-412.
|
4. |
McGrath M, Tam E, Sladkova M, et al. GMP-compatible and xeno-free cultivation of mesenchymal progenitors derived from human-induced pluripotent stem cells. Stem Cell Res Ther, 2019, 10(1): 11. doi: 10.1186/s13287-018-1119-3.
|
5. |
Chen AK, Reuveny S, Oh SK. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv, 2013, 31(7): 1032-1046.
|
6. |
Wall ME, Bernacki SH, Loboa EG. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng, 2007, 13(6): 1291-1298.
|
7. |
Gruber HE, Somayaji S, Riley F, et al. Human adipose-derived mesenchymal stem cells: serial passaging, doubling time and cell senescence. Biotech Histochem, 2012, 87(4): 303-311.
|
8. |
Elkhenany H, Amelse L, Caldwell M, et al. Impact of the source and serial passaging of goat mesenchymal stem cells on osteogenic differentiation potential: implications for bone tissue engineering. J Anim Sci Biotechnol, 2016, 7: 16. doi: 10.1186/s40104-016-0074-z.
|
9. |
Bonnier F, Keating ME, Wróbel TP, et al. Cell viability assessment using the Alamar blue assay: a comparison of 2D and 3D cell culture models. Toxicol In Vitro, 2015, 29(1): 124-131.
|
10. |
Tsai AC, Jeske R, Chen X, et al. Influence of microenvironment on mesenchymal stem cell therapeutic potency: From planar culture to microcarriers. Front Bioeng Biotechnol, 2020, 8: 640. doi: 10.3389/fbioe.2020.00640.
|
11. |
孙恒, 蒋海越, 马世泽, 等. 左旋聚乳酸多孔微球体外动态培养耳郭软骨细胞的研究. 组织工程与重建外科杂志, 2019, 15(2): 81-84.
|
12. |
Eggerschwiler B, Canepa DD, Pape HC, et al. Automated digital image quantification of histological staining for the analysis of the trilineage differentiation potential of mesenchymal stem cells. Stem Cell Res Ther, 2019, 10(1): 69. doi: 10.1186/s13287-019-1170-8.
|
13. |
Song J, Chen Z, Murillo LL, et al. Hierarchical porous silk fibroin/poly (L-lactic acid) fibrous membranes towards vascular scaffolds. Int J Biol Macromol, 2021, 166: 1111-1120.
|
14. |
Voga M, Drnovsek N, Novak S, et al. Silk fibroin induces chondrogenic differentiation of canine adipose-derived multipotent mesenchymal stromal cells/mesenchymal stem cells. J Tissue Eng, 2019, 10: 2041731419835056. doi: 10.1177/2041731419835056.
|
15. |
Barlian A, Judawisastra H, Alfarafisa NM, et al. Chondrogenic differentiation of adipose-derived mesenchymal stem cells induced by L-ascorbic acid and platelet rich plasma on silk fibroin scaffold. PeerJ, 2018, 6: e5809. doi: 10.7717/peerj.5809.
|
16. |
Shekaran A, Sim E, Tan KY, et al. Enhanced in vitro osteogenic differentiation of human fetal MSCs attached to 3D microcarriers versus harvested from 2D monolayers. BMC Biotechnol, 2015, 15: 102. doi: 10.1186/s12896-015-0219-8.
|
17. |
Goh TK, Zhang ZY, Chen AK, et al. Microcarrier culture for efficient expansion and osteogenic differentiation of human fetal mesenchymal stem cells. Biores Open Access, 2013, 2(2): 84-97.
|
18. |
Tseng PC, Young TH, Wang TM, et al. Spontaneous osteogenesis of MSCs cultured on 3D microcarriers through alteration of cytoskeletal tension. Biomaterials, 2012, 33(2): 556-564.
|
19. |
Lin YM, Lim JF, Lee J, et al. Expansion in microcarrier-spinner cultures improves the chondrogenic potential of human early mesenchymal stromal cells. Cytotherapy, 2016, 18(6): 740-753.
|
20. |
Ng EX, Wang M, Neo SH, et al. Dissolvable gelatin-based microcarriers generated through droplet microfluidics for expansion and culture of mesenchymal stromal cells. Biotechnol J, 2021, 16(3): e2000048. doi: 10.1002/biot.202000048.
|
21. |
Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci, 2003, 116(Pt 8): 1397-1408.
|
22. |
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, 8(4): 315-317.
|
23. |
Liu L, Yuan W, Wang J. Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech Model Mechanobiol, 2010, 9(6): 659-670.
|