1. |
Azuma C, Yasuda K, Tanabe Y, et al. Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J Biomed Mater Res A, 2007, 81(2): 373-380.
|
2. |
Dias IR, Viegas CA, Carvalho PP. Large animal models for osteochondral regeneration. Adv Exp Med Biol, 2018, 1059: 441-501.
|
3. |
Chevrier A, Kouao AS, Picard G, et al. Interspecies comparison of subchondral bone properties important for cartilage repair. J Orthop Res, 2015, 33(1): 63-70.
|
4. |
Eltawil NM, De Bari C, Achan P, et al. A novel in vivo murine model of cartilage regeneration. Age and strain-dependent outcome after joint surface injury. Osteoarthritis Cartilage, 2009, 17(6): 695-704.
|
5. |
Matsuoka M, Onodera T, Sasazawa F, et al. An articular cartilage repair model in common C57Bl/6 mice. Tissue Eng Part C Methods, 2015, 21(8): 767-772.
|
6. |
Mainil-Varlet P, Aigner T, Brittberg M, et al. Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg (Am), 2003, 85-A Suppl 2: 45-57.
|
7. |
Serra CI, Soler C. Animal models of osteoarthritis in small mammals. Vet Clin North Am Exot Anim Pract, 2019, 22(2): 211-221.
|
8. |
Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev, 2010, 16(1): 105-115.
|
9. |
Meng X, Ziadlou R, Grad S, et al. Animal models of osteochondral defect for testing biomaterials. Biochem Res Int, 2020, 2020: 9659412. doi: 10.1155/2020/9659412.
|
10. |
Mahmoud EE, Kamei N, Shimizu R, et al. Therapeutic potential of multilineage-differentiating stress-enduring cells for osteochondral repair in a rat model. Stem Cells Int, 2017, 2017: 8154569. doi: 10.1155/2017/8154569.
|
11. |
Park KS, Kim BJ, Lih E, et al. Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold-mediated chondrogenesis. Acta Biomater, 2018, 73: 204-216.
|
12. |
Chapelin F, Khurana A, Moneeb M, et al. Tumor formation of adult stem cell transplants in rodent arthritic joints. Mol Imaging Biol, 2019, 21(1): 95-104.
|
13. |
Al-Ansari MM, Hendrayani SF, Shehata AI, et al. p16(INK4A) represses the paracrine tumor-promoting effects of breast stromal fibroblasts. Oncogene, 2013, 32(18): 2356-2364.
|
14. |
Ye C, Chen J, Qu Y, et al. Naringin and bone marrow mesenchymal stem cells repair articular cartilage defects in rabbit knees through the transforming growth factor-β superfamily signaling pathway. Exp Ther Med, 2020, 20(5): 59. doi: 10.3892/etm.2020.9187.
|
15. |
Li L, Duan X, Fan Z, et al. Mesenchymal stem cells in combination with hyaluronic acid for articular cartilage defects. Sci Rep, 2018, 8(1): 9900. doi: 10.1038/s41598-018-27737-y.
|
16. |
Carballo CB, Nakagawa Y, Sekiya I, et al. Basic science of articular cartilage. Clin Sports Med, 2017, 36(3): 413-425.
|
17. |
Arshi A, Petrigliano FA, Williams RJ, et al. Stem cell treatment for knee articular cartilage defects and osteoarthritis. Curr Rev Musculoskelet Med, 2020, 13(1): 20-27.
|
18. |
Eldracher M, Orth P, Cucchiarini M, et al. Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med, 2014, 42(11): 2741-2750.
|
19. |
Boyan B. Development of the ASTM standard guide for in vivo assessment of implantable devices intended to repair or regenerate articular cartilage. Tissue Eng Pt A, 2014, 20: S69. https://www.astm.org/Standards/F2451.htm.
|