1. |
Kozusko SD, Riccio C, Goulart M, et al. Chitosan as a bone scaffold biomaterial. J Craniofac Surg, 2018, 29(7): 1788-1793.
|
2. |
Ginebra MP, Espanol M, Maazouz Y, et al. Bioceramics and bone healing. EFORT Open Rev, 2018, 3(5): 173-183.
|
3. |
Fox K, Tran PA, Tran N. Recent advances in research applications of nanophase hydroxyapatite. Chemphyschem, 2012, 13(10): 2495-2506.
|
4. |
王丽萍. 微量氟、锌、锶掺杂羟基磷灰石晶体结构及生物学效应研究. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所), 2018.
|
5. |
Tamai N, Myoui A, Tomita T, et al. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J Biomed Mater Res, 2002, 59(1): 110-117.
|
6. |
廖欣宇, 王福科, 王国梁. 骨组织工程支架的进展与挑战. 中国组织工程研究, 2021, 25(28): 4553-4560.
|
7. |
毛克亚, 刘建恒, 崔翔. 骨组织工程材料在大段骨缺损修复中的应用进展. 武警医学, 2020, 31(4): 277-280, 283.
|
8. |
Su Y, Cockerill I, Wang Y, et al. Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol, 2019, 37(4): 428-441.
|
9. |
Ferrone E, Araneo R, Notargiacomo A, et al. ZnO nanostructures and electrospun ZnO-polymeric hybrid nanomaterials in biomedical, health, and sustainability applications. Nanomaterials (Basel), 2019, 9(10): 1449. doi: 10.3390/nano9101449.
|
10. |
朱斌, 何远怀, 孟增东, 等. 多孔 ZnO/羟基磷灰石生物复合材料的制备与性能. 复合材料学报, 2019, 36(11): 2637-2643.
|
11. |
张亚楠. ZnO/nHA 仿骨结构活性增强羟基磷灰石骨修复材料的构建及体外生物活性研究. 昆明: 昆明理工大学, 2020.
|
12. |
奚廷斐. 医疗器械生物学评价. 北京: 中国标准出版社, 2012: 87-170.
|
13. |
李烨. 具有促成骨活性的 PLGA/TCP/Mg 复合多孔支架修复骨缺损研究. 北京: 中国科学院大学, 2016.
|
14. |
Battafarano G, Rossi M, De Martino V, et al. Strategies for bone regeneration: from graft to tissue engineering. Int J Mol Sci, 2021, 22(3): 1128. doi: 10.3390/ijms22031128.
|
15. |
Yan Y, Chen H, Zhang H, et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials, 2019, 190-191: 97-110.
|
16. |
严霞. SPS 制备多孔 SrO/nHA 骨修复材料在非人灵长类动物体内的生物相容性及成骨活性研究. 昆明: 昆明理工大学, 2019.
|
17. |
Shen Y, Liu W, Wen C, et al. Bone regeneration: importance of local pH-strontium-doped borosilicate scaffold. J Mater Chem, 2012, 22(17): 8662-8670.
|
18. |
Seo HJ, Cho YE, Kim T, et al. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract, 2010, 4(5): 356-361.
|
19. |
Storrie H, Stupp SI. Cellular response to zinc-containing organoapatite: an in vitro study of proliferation, alkaline phosphatase activity an biomineralization. Biomaterials, 2005, 26(27): 5492-5499.
|
20. |
Zhao C, Wu H, Hou P, et al. Enhanced corrosion resistance and antibacterial property of Zn doped DCPD coating on biodegradable Mg. Materials Letters, 2016, 180: 42-46.
|
21. |
Bakhsheshi-Rad HR, Hamzah E, Low HT, et al. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities. Mater Sci Eng C Mater Biol Appl, 2017, 73: 215-219.
|