1. |
Steiner M, Claes L, Ignatius A, et al. Disadvantages of interfragmentary shear on fracture healing—mechanical insights through numerical simulation. J Orthop Res, 2014, 32(7): 865-872.
|
2. |
Sellei RM, Garrison RL, Kobbe P, et al. Effects of near cortical slotted holes in locking plate constructs. J Orthop Trauma, 2011, 25 Suppl 1: S35-S40.
|
3. |
高哲辰, 周方, 田耘, 等. 锁定接骨板内固定治疗股骨远端骨折. 中华创伤骨科杂志, 2016, 18(11): 965-969.
|
4. |
Lujan TJ, Henderson CE, Madey SM, et al. Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation. J Orthop Trauma, 2010, 24(3): 156-162.
|
5. |
Märdian S, Schaser KD, Duda GN, et al. Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Clin Biomech (Bristol, Avon), 2015, 30(4): 391-396.
|
6. |
Wang J, Zhang X, Li S, et al. Plating system design determines mechanical environment in long bone mid-shaft fractures: a finite element analysis. J Invest Surg, 2020, 33(8): 699-708.
|
7. |
张宏军, 许纬洲, 贺长青, 等. 自控微动带锁髓内钉对山羊骨折愈合的生物化学研究. 中国临床解剖学杂志, 2008, 26(4): 423-425.
|
8. |
Bottlang M, Doornink J, Fitzpatrick DC, et al. Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg (Am), 2009, 91(8): 1985-1994.
|
9. |
Epari DR, Gurung R, Hofmann-Fliri L, et al. Biphasic plating improves the mechanical performance of locked plating for distal femur fractures. J Biomech, 2021, 115: 110192. doi: 10.1016/j.jbiomech.2020.110192.
|
10. |
向明, 胡晓川, 林砚铭, 等. 可控性微动时间对骨折愈合影响的实验研究. 中华骨科杂志, 2019, 39(21): 1333-1343.
|
11. |
Elkins J, Marsh JL, Lujan T, et al. Motion predicts clinical callus formation: construct-specific finite element analysis of supracondylar femoral fractures. J Bone Joint Surg (Am), 2016, 98(4): 276-284.
|
12. |
Epari DR, Duda GN, Thompson MS. Mechanobiology of bone healing and regeneration: in vivo models. Proc Inst Mech Eng H, 2010, 224(12): 1543-1553.
|
13. |
Goodship AE, Cunningham JL, Kenwright J. Strain rate and timing of stimulation in mechanical modulation of fracture healing. Clin Orthop Relat Res, 1998, (355 Suppl): S105-S115.
|
14. |
Glatt V, Evans CH, Tetsworth K. A Concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front Physiol, 2017, 7: 678. doi: 10.3389/fphys.2016.00678.
|
15. |
Perren SM. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res, 1979, (138): 175-196.
|
16. |
刘振东. 骨痂的形成与分类. 中国矫形外科杂志, 2016, 24(4): 332-337.
|
17. |
Ueno M, Urabe K, Naruse K, et al. Influence of internal fixator stiffness on murine fracture healing: two types of fracture healing lead to two distinct cellular events and FGF-2 expressions. Exp Anim, 2011, 60(1): 79-87.
|
18. |
乔林, 侯树勋, 李文峰, 等. 微动对骨折端微循环及血管内皮生长因子(VEGF) 表达的影响. 中华创伤骨科杂志, 2005, 7(1): 52-54.
|
19. |
Claes LE, Meyers N. The direction of tissue strain affects the neovascularization in the fracture-healing zone. Med Hypotheses, 2020, 137: 109537. doi: 10.1016/j.mehy.2019.109537.
|
20. |
Chen X, Yan J, He F, et al. Mechanical stretch induces antioxidant responses and osteogenic differentiation in human mesenchymal stem cells through activation of the AMPK-SIRT1 signaling pathway. Free Radic Biol Med, 2018, 126: 187-201.
|
21. |
McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg (Br), 1978, 60-B(2): 150-162.
|
22. |
Hulth A. Current concepts of fracture healing. Clin Orthop Relat Res, 1989, (249): 265-284.
|
23. |
Joslin CC, Eastaugh-Waring SJ, Hardy JR, et al. Weight bearing after tibial fracture as a guide to healing. Clin Biomech (Bristol, Avon), 2008, 23(3): 329-333.
|
24. |
Augat P, Merk J, Ignatius A, et al. Early, full weightbearing with flexible fixation delays fracture healing. Clin Orthop Relat Res, 1996, (328): 194-202.
|
25. |
喻鑫罡, 张先龙, 曾炳芳. 低频可控性微动影响长骨骨折愈合的实验研究. 中华创伤骨科杂志, 2005, 7(8): 744-748.
|
26. |
Kim IS, Song YM, Lee B, et al. Human mesenchymal stromal cells are mechanosensitive to vibration stimuli. J Dent Res, 2012, 91(12): 1135-1140.
|
27. |
Augat P, Merk J, Wolf S, et al. Mechanical stimulation by external application of cyclic tensile strains does not effectively enhance bone healing. J Orthop Trauma, 2001, 15(1): 54-60.
|
28. |
Vaughn JE, Shah RV, Samman T, et al. Systematic review of dynamization vs exchange nailing for delayed/non-union femoral fractures. World J Orthop, 2018, 9(7): 92-99.
|
29. |
Loboa EG, Beaupré GS, Carter DR. Mechanobiology of initial pseudarthrosis formation with oblique fractures. J Orthop Res, 2001, 19(6): 1067-1072.
|
30. |
Uzer G, Pongkitwitoon S, Ete Chan M, et al. Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear. J Biomech, 2013, 46(13): 2296-2302.
|
31. |
Bishop NE, van Rhijn M, Tami I, et al. Shear does not necessarily inhibit bone healing. Clin Orthop Relat Res, 2006, 443: 307-314.
|
32. |
MacLeod AR, Serrancoli G, Fregly BJ, et al. The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates: An experimental and finite element study. Bone Joint Res, 2019, 7(12): 639-649.
|
33. |
Steiner M, Claes L, Ignatius A, et al. Numerical simulation of callus healing for optimization of fracture fixation stiffness. PLoS One, 2014, 9(7): e101370. doi: 10.1371/journal.pone.0101370.
|
34. |
Park SH, O’Connor K, McKellop H, et al. The influence of active shear or compressive motion on fracture-healing. J Bone Joint Surg (Am), 1998, 80(6): 868-878.
|
35. |
Augat P, Hollensteiner M, von Rüden C. The role of mechanical stimulation in the enhancement of bone healing. Injury, 2021, 52 Suppl 2: S78-S83.
|
36. |
Ramesh S, Zaman F, Madhuri V, et al. Radial extracorporeal shock wave treatment promotes bone growth and chondrogenesis in cultured fetal rat metatarsal bones. Clin Orthop Relat Res, 2020, 478(3): 668-678.
|
37. |
Leighton R, Watson JT, Giannoudis P, et al. Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): A systematic review and meta-analysis. Injury, 2017, 48(7): 1339-1347.
|
38. |
Ribeiro FO, Folgado J, Garcia-Aznar JM, et al. Is the callus shape an optimal response to a mechanobiological stimulus? Med Eng Phys, 2014, 36(11): 1508-1514.
|
39. |
Claes L. Mechanobiology of fracture healing part 1: Principles. Unfallchirurg, 2017, 120(1): 14-22.
|
40. |
Willie BM, Blakytny R, Glöckelmann M, et al. Temporal variation in fixation stiffness affects healing by differential cartilage formation in a rat osteotomy model. Clin Orthop Relat Res, 2011, 469(11): 3094-3101.
|
41. |
Ghiasi MS, Chen JE, Rodriguez EK, et al. Computational modeling of human bone fracture healing affected by different conditions of initial healing stage. BMC Musculoskelet Disord, 2019, 20(1): 562. doi: 10.1186/s12891-019-2854-z.
|
42. |
Houston J, Armitage L, Sedgwick PM, et al. Defining the mean angle of diaphyseal long bone non-unions—Does shear prevail? J Orthop Trauma, 2020. doi: 10.1097/BOT.0000000000002050.
|
43. |
Kiyono M, Noda T, Nagano H, et al. Clinical outcomes of treatment with locking compression plates for distal femoral fractures in a retrospective cohort. J Orthop Surg Res, 2019, 14(1): 384.
|
44. |
Rosa N, Marta M, Vaz M, et al. Recent developments on intramedullary nailing: a biomechanical perspective. Ann N Y Acad Sci, 2017, 1408(1): 20-31.
|
45. |
Fu R, Feng Y, Liu Y, et al. The combined effects of dynamization time and degree on bone healing. J Orthop Res, 2021: 29. doi: 10.1002/jor.25060.
|
46. |
程建岗, 袁志, 刘建, 等. 锁定接骨板动力化治疗股骨远端骨折经锁定接骨板内固定术后骨不连的效果. 国际骨科学杂志, 2019, 40(1): 57-59.
|
47. |
Popkov AV, Kononovich NA, Filimonova GN, et al. Bone formation and adaptive morphology of the anterior tibial muscle in 3-mm daily lengthening using high-fractional automated distraction and osteosynthesis with the Ilizarov apparatus combined with intramedullary hydroxyapatite-coated wire. Biomed Res Int, 2019, 2019: 3241263. doi: 10.1155/2019/3241263.
|
48. |
Bakhsh K, Atiq-Ur-Rehman None, Zimri FK, et al. Presentation and management outcome of tibial infected non-union with Ilizarov technique. Pak J Med Sci, 2019, 35(1): 136-140.
|
49. |
Bottlang M, Feist F. Biomechanics of far cortical locking. J Orthop Trauma, 2011, 25 Suppl 1(Suppl 1): S21-S28.
|
50. |
Siddiqui JA, Partridge NC. Physiological bone remodeling: systemic regulation and growth factor involvement. Physiology (Bethesda), 2016, 31(3): 233-245.
|
51. |
裴国献. 数字骨科: 骨科领域的第三次技术浪潮. 中华创伤骨科杂志, 2019, 21(1): 3-5.
|
52. |
Pietsch M, Niemeyer F, Simon U, et al. Modelling the fracture-healing process as a moving-interface problem using an interface-capturing approach. Comput Methods Biomech Biomed Engin, 2018, 21(8): 512-520.
|
53. |
Ghimire S, Miramini S, Edwards G, et al. The investigation of bone fracture healing under intramembranous and endochondral ossification. Bone Rep, 2020, 14: 100740. doi: 10.1016/j.bonr.2020.100740.
|
54. |
Henderson CE, Bottlang M, Marsh JL, et al. Does locked plating of periprosthetic supracondylar femur fractures promote bone healing by callus formation? Two cases with opposite outcomes. Iowa Orthop J, 2008, 28: 73-76.
|
55. |
Perumal R, Shankar V, Basha R, et al. Is nail dynamization beneficial after twelve weeks—An analysis of 37 cases. J Clin Orthop Trauma, 2018, 9(4): 322-326.
|
56. |
Oh JK, Hwang JH, Lee SJ, et al. Dynamization of locked plating on distal femur fracture. Arch Orthop Trauma Surg, 2011, 131(4): 535-539.
|
57. |
潘志军. 非感染性骨不连的再认识-AO 的观点. 中华创伤骨科杂志, 2020, 22(2): 112-115.
|