1. |
Huang W, Ling S, Li C, et al. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev, 2018, 47(17): 6486-6504.
|
2. |
Tomeh MA, Hadianamrei R, Zhao X. Silk fibroin as a functional biomaterial for drug and gene delivery. Pharmaceutics, 2019, 11(10): 494. doi: 10.3390/pharmaceutics11100494.
|
3. |
Tran SH, Wilson CG, Seib FP. A review of the emerging role of silk for the treatment of the eye. Pharm Res, 2018, 35(12): 248. doi: 10.1007/s11095-018-2534-y.
|
4. |
Wani SUD, Gautam SP, Qadrie ZL, et al. Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-A review. Int J Biol Macromol, 2020, 163: 2145-2161.
|
5. |
Farokhi M, Mottaghitalab F, Reis RL, et al. Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. J Control Release, 2020, 321: 324-347.
|
6. |
Zheng H, Zuo B. Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B, 2021, 9(5): 1238-1258.
|
7. |
Quartinello F, Tallian C, Auer J, et al. Smart textiles in wound care: functionalization of cotton/PET blends with antimicrobial nanocapsules. J Mater Chem B, 2019, 7(42): 6592-6603.
|
8. |
Tallian C, Herrero-Rollett A, Stadler K, et al. Structural insights into pH-responsive drug release of self-assembling human serum albumin-silk fibroin nanocapsules. Eur J Pharm Biopharm, 2018, 133: 176-187.
|
9. |
Yonesi M, Garcia-Nieto M, Guinea GV, et al. Silk fibroin: An ancient material for repairing the injured nervous system. Pharmaceutics, 2021, 13(3): 429. doi: 10.3390/pharmaceutics13030429.
|
10. |
Galam N, Tulay P, Adali T. In vitro MCF-7 cells apoptosis analysis of carboplatin loaded silk fibroin particles. Molecules, 2020, 25(5): 1110. doi: 10.3390/molecules25051110.
|
11. |
Shen X, Zhang Y, Gu Y, et al. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials, 2016, 106: 205-216.
|
12. |
Sharma S, Bano S, Ghosh AS, et al. Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface. Nanomedicine, 2016, 12(5): 1193-1204.
|
13. |
Zhao X, Chen Z, Liu Y, et al. Silk fibroin microparticles with hollow mesoporous silica nanocarriers encapsulation for abdominal wall repair. Adv Healthc Mater, 2018, 7(21): e1801005. doi: 10.1002/adhm.201801005.
|
14. |
Luo J, Zhang H, Zhu J, et al. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Colloids Surf B Biointerfaces, 2018, 163: 369-378.
|
15. |
Zhang L, Xu L, Li G, et al. Fabrication of high-strength mecobalamin loaded aligned silk fibroin scaffolds for guiding neuronal orientation. Colloids Surf B Biointerfaces, 2019, 173: 689-697.
|
16. |
Xu R, Zhang Z, Toftdal MS, et al. Synchronous delivery of hydroxyapatite and connective tissue growth factor derived osteoinductive peptide enhanced osteogenesis. J Control Release, 2019, 301: 129-139.
|
17. |
Ou L, Lan Y, Feng Z, et al. Functionalization of SF/HAP scaffold with GO-PEI-miRNA inhibitor complexes to enhance bone regeneration through activating transcription factor 4. Theranostics, 2019, 9(15): 4525-4541.
|
18. |
Yang Q, Teng BH, Wang LN, et al. Silk fibroin/cartilage extracellular matrix scaffolds with sequential delivery of TGF-β3 for chondrogenic differentiation of adipose-derived stem cells. Int J Nanomedicine, 2017, 12: 6721-6733.
|
19. |
Wang Q, Cao L, Liu Y, et al. Evaluation of synergistic osteogenesis between icariin and BMP2 through a micro/meso hierarchical porous delivery system. Int J Nanomedicine, 2017, 12: 7721-7735.
|
20. |
Xin X, Wu J, Zheng A, et al. Delivery vehicle of muscle-derived irisin based on silk/calcium silicate/sodium alginate composite scaffold for bone regeneration. Int J Nanomedicine, 2019, 14: 1451-1467.
|
21. |
Shera SS, Sahu S, Banik RM. Preparation of drug eluting natural composite scaffold using response surface methodology and artificial neural network approach. Tissue Eng Regen Med, 2018, 15(2): 131-143.
|
22. |
黄文良, 叶鹏, 莫刚, 等. 制备缓释骨形态发生蛋白2的丝素蛋白/壳聚糖/纳米羟基磷灰石生物支架. 中国组织工程研究, 2017, 21(22): 3488-3493.
|
23. |
Ramadass SK, Nazir LS, Thangam R, et al. Type Ⅰ collagen peptides and nitric oxide releasing electrospun silk fibroin scaffold: A multifunctional approach for the treatment of ischemic chronic wounds. Colloids Surf B Biointerfaces, 2019, 175: 636-643.
|
24. |
Li M, Ai M, Yang Y, et al. Silk-coated dexamethasone non-spherical microcrystals for local drug delivery to inner ear. Eur J Pharm Sci, 2020, 150: 105336. doi: 10.1016/j.ejps.2020.105336.
|
25. |
Li G, Che MT, Zhang K, et al. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials, 2016, 83: 233-248.
|
26. |
Li G, Che MT, Zeng X, et al. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury. J Biomed Mater Res A, 2018, 106(8): 2158-2170.
|
27. |
Bhattacharjee P, Naskar D, Maiti TK, et al. Non-mulberry silk fibroin grafted poly (Є-caprolactone)/nano hydroxyapatite nanofibrous scaffold for dual growth factor delivery to promote bone regeneration. J Colloid Interface Sci, 2016, 472: 16-33.
|
28. |
Zhou WH, Zhang T, Yan JL, et al. In vitro and in vivo evaluation of structurally-controlled silk fibroin coatings for orthopedic infection and in-situ osteogenesis. Acta Biomater, 2020, 116: 223-245.
|
29. |
Xiao W, Zhang J, Qu X, et al. Fabrication of protease ⅩⅣ-loaded microspheres for cell spreading in silk fibroin hydrogels. J Mater Sci Mater Med, 2020, 31(12): 128. doi: 10.1007/s10856-020-06466-7.
|
30. |
Shao J, Ding Z, Li L, et al. Improved accumulation of TGF-β by photopolymerized chitosan/silk protein bio-hydrogel matrix to improve differentiations of mesenchymal stem cells in articular cartilage tissue regeneration. J Photochem Photobiol B, 2020, 203: 111744. doi: 10.1016/j.jphotobiol.2019.111744.
|
31. |
Ziadlou R, Rotman S, Teuschl A, et al. Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111701. doi: 10.1016/j.msec.2020.111701.
|
32. |
He S, Shi D, Han Z, et al. Heparinized silk fibroin hydrogels loading FGF1 promote the wound healing in rats with full-thickness skin excision. Biomed Eng Online, 2019, 18(1): 97. doi: 10.1186/s12938-019-0716-4.
|
33. |
Oliveira IM, Gonçalves C, Shin ME, et al. Anti-inflammatory properties of injectable betamethasone-loaded tyramine-modified gellan gum/silk fibroin hydrogels. Biomolecules, 2020, 10(10): 1456. doi: 10.3390/biom10101456.
|
34. |
Laomeephol C, Ferreira H, Kanokpanont S, et al. Dual-functional liposomes for curcumin delivery and accelerating silk fibroin hydrogel formation. Int J Pharm, 2020, 589: 119844. doi: 10.1016/j.ijpharm.2020.119844.
|
35. |
Youn J, Choi JH, Lee S, et al. Pluronic F-127/silk fibroin for enhanced mechanical property and sustained release drug for tissue engineering biomaterial. Materials (Basel), 2021, 14(5): 1287. doi: 10.3390/ma14051287.
|
36. |
Yan S, Wang Q, Tariq Z, et al. Facile preparation of bioactive silk fibroin/hyaluronic acid hydrogels. Int J Biol Macromol, 2018, 118(Pt A): 775-782.
|
37. |
Wu J, Zheng K, Huang X, et al. Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomater, 2019, 91: 60-71.
|
38. |
Xu X, Wang X, Qin C, et al. Silk fibroin/poly-(L-lactide-co-caprolactone) nanofiber scaffolds loaded with Huangbai Liniment to accelerate diabetic wound healing. Colloids Surf B Biointerfaces, 2021, 199: 111557. doi: 10.1016/j.colsurfb.2021.111557.
|
39. |
Hadisi Z, Farokhi M, Bakhsheshi-Rad HR, et al. Hyaluronic acid (HA)-based silk fibroin/zinc oxide core-shell electrospun dressing for burn wound management. Macromol Biosci, 2020, 20(4): e1900328. doi: 10.1002/mabi.201900328.
|
40. |
Wang Z, Song X, Cui Y, et al. Silk fibroin H-fibroin/poly(ε-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug release. J Colloid Interface Sci, 2021, 593: 142-151.
|
41. |
Khan AUR, Nadeem M, Bhutto MA, et al. Physico-chemical and biological evaluation of PLCL/SF nanofibers loaded with oregano essential oil. Pharmaceutics, 2019, 11(8): 386. doi: 10.3390/pharmaceutics11080386.
|
42. |
Dadras Chomachayi M, Solouk A, Akbari S, et al. Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: Thyme essential oil and doxycycline monohydrate release study. J Biomed Mater Res A, 2018, 106(4): 1092-1103.
|
43. |
Chouhan D, Chakraborty B, Nandi SK, et al. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater, 2017, 48: 157-174.
|
44. |
Song J, Klymov A, Shao J, et al. Electrospun nanofibrous silk fibroin membranes containing gelatin nanospheres for controlled delivery of biomolecules. Adv Healthc Mater, 2017, 6(14). doi: 10.1002/adhm.201700014.
|
45. |
Kalani MM, Nourmohammadi J, Negahdari B, et al. Electrospun core-sheath poly (vinyl alcohol)/silk fibroin nanofibers with Rosuvastatin release functionality for enhancing osteogenesis of human adipose-derived stem cells. Mater Sci Eng C Mater Biol Appl, 2019, 99: 129-139.
|
46. |
Xu R, Zhao H, Muhammad H, et al. Dual-delivery of FGF-2/CTGF from silk fibroin/PLCL-PEO coaxial fibers enhances MSC proliferation and fibrogenesis. Sci Rep, 2017, 7(1): 8509. doi: 10.1038/s41598-017-08226-0.
|
47. |
Silva SS, Oliveira NM, Oliveira MB, et al. Fabrication and characterization of Eri silk fibers-based sponges for biomedical application. Acta Biomater, 2016, 32: 178-189.
|
48. |
Wang Q, Qian Z, Liu B, et al. In vitro and in vivo evaluation of new PRP antibacterial moisturizing dressings for infectious wound repair. J Biomater Sci Polym Ed, 2019, 30(6): 462-485.
|
49. |
Naskar D, Ghosh AK, Mandal M, et al. Dual growth factor loaded nonmulberry silk fibroin/carbon nanofiber composite 3D scaffolds for in vitro and in vivo bone regeneration. Biomaterials, 2017, 136: 67-85.
|
50. |
Liu M, Zhang Y, Liu K, et al. Biomimicking antibacterial opto-electro sensing sutures made of regenerated silk proteins. Adv Mater, 2021, 33(1): e2004733. doi: 10.1002/adma.202004733.
|
51. |
Jin D, Hu J, Xia D, et al. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo. Int J Nanomedicine, 2019, 14: 4261-4276.
|
52. |
Liu Z, Zheng Z, Chen K, et al. A heparin-functionalized woven stent graft for endovascular exclusion. Colloids Surf B Biointerfaces, 2019, 180: 118-126.
|