1. |
Azi ML, Aprato A, Santi I, et al. Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis. BMC Musculoskelet Disord, 2016, 17(1): 465. doi: 10.1186/s12891-016-1312-4.
|
2. |
Winkler T, Sass FA, Duda GN, et al. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res, 2018, 7(3): 232-243.
|
3. |
Karalashvili L, Kakabadze A, Uhryn M, et al. Bone grafts for reconstruction of bone defects (review). Georgian Med News, 2018, (282): 44-49.
|
4. |
Hasan A, Byambaa B, Morshed M, et al. Advances in osteobiologic materials for bone substitutes. J Tissue Eng Regen Med, 2018, 12(6): 1448-1468.
|
5. |
Mansour A, Mezour MA, Badran Z, et al. Extracellular matrices for bone regeneration: A literature review. Tissue Eng Part A, 2017, 23(23-24): 1436-1451.
|
6. |
张保亮. 生物型异种骨生物相容性细胞学及免疫学研究. 广州: 南方医科大学, 2016.
|
7. |
Bracey DN, Jinnah AH, Willey JS, et al. Investigating the osteoinductive potential of a decellularized xenograft bone substitute. Cells Tissues Organs, 2019, 207(2): 97-113.
|
8. |
Cho H, Bucciarelli A, Kim W, et al. Natural sources and applications of demineralized bone matrix in the field of bone and cartilage tissue engineering//Chun HJ, Reis RL, Motta A, et al. Bioinspired biomaterials: Advances in tissue engineering and regenerative medicine. Singapore: Springer Singapore, 2020: 3-14.
|
9. |
Xu AT, Qi WT, Lin MN, et al. The optimization of sintering treatment on bovine-derived bone grafts for bone regeneration: in vitro and in vivo evaluation. J Biomed Mater Res B Appl Biomater, 2020, 108(1): 272-281.
|
10. |
周建伟, 周静, 李矛, 等. 脱细胞脱钙骨基质-促红细胞生成素水凝胶促成骨和成血管的能力. 中国组织工程研究, 2021, 25(28): 4454-4459.
|
11. |
别晓梅, 马学华, 闫乐媛, 等. BMP-2 与 TBC 复合的参数和骨诱导能力的动物活体内评价. 中国骨与关节损伤杂志, 2020, 35(11): 1153-1155.
|
12. |
徐丽明, 邵安良, 赵艳红. 动物源性生物材料残留 DNA 的定量检测法. 生物医学工程学杂志, 2012, 29(3): 479-485.
|
13. |
Brydone AS, Meek D, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H, 2010, 224(12): 1329-1343.
|
14. |
Koike C, Kannagi R, Takuma Y, et al. Introduction of α (1,2)-fucosyltransferase and its effect on a-Gal epitopes in transgenic pig. Xenotransplantation, 1996, 3(1): 81-86.
|
15. |
邵安良. 动物源性生物材料免疫原性检测与评价技术研究. 北京: 中国人民解放军医学院, 2019.
|
16. |
Yamada K, Sachs DH, DerSimonian H. Direct and indirect recognition of pig class Ⅱ antigens by human T cells. Transplant Proc, 1995, 27(1): 258-259.
|
17. |
Chen G, Lv Y. Decellularized bone matrix scaffold for bone regeneration. Methods Mol Biol, 2018, 1577: 239-254.
|
18. |
Rana D, Zreiqat H, Benkirane-Jessel N, et al. Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med, 2017, 11(4): 942-965.
|
19. |
胡晓霞. 非晶磷酸钙/磷灰石烧结体的组织结构及其力学和溶解行为. 济南: 山东大学, 2014.
|
20. |
白玉龙, 赵彦涛, 沈亚俊, 等. 3种植骨材料在大鼠下颌骨骨缺损修复实验中的长期效果观察. 中国骨与关节损伤杂志, 2019, 34(6): 581-584.
|
21. |
李龙飞, 李志鹏, 刘润恒, 等. 不同烧结温度对猪骨羟基磷灰石理化性能的影响. 中华口腔医学研究杂志 (电子版), 2017, 11(3): 164-168.
|
22. |
do Desterro Fde P, Sader MS, Soares GD, et al. Can inorganic bovine bone grafts present distinct properties? Braz Dent J, 2014, 25(4): 282-288.
|
23. |
Wang Z, Yuan L, Zuo X, et al. Variations in the sequences of BMP2 imply different mechanisms for the evolution of morphological diversity in vertebrates. Comp Biochem Physiol Part D Genomics Proteomics, 2009, 4(2): 100-104.
|
24. |
Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials, 2011, 32(12): 3233-3243.
|