1. |
Mayer HM. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976), 1997, 22(6): 691-699.
|
2. |
Silvestre C, Mac-Thiong JM, Hilmi R, et al. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: Oblique lumbar interbody fusion in 179 patients. Asian Spine J, 2012, 6(2): 89-97.
|
3. |
王吉莹, 周志杰, 范顺武, 等. 斜外侧椎间融合术治疗腰椎退行性疾病的早期并发症分析. 中华骨科杂志, 2017, 37(16): 1006-1013.
|
4. |
Sato J, Ohtori S, Orita S, et al. Radiographic evaluation of indirect decompression of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for degenerated lumbar spondylolisthesis. Eur Spine J, 2017, 26(3): 671-678.
|
5. |
Fujibayashi S, Hynes RA, Otsuki B, et al. Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine (Phila Pa 1976), 2015, 40(3): E175-182.
|
6. |
Ohtori S, Orita S, Yamauchi K, et al. Mini-open anterior retroperitoneal lumbar interbody fusion: Oblique lateral interbody fusion for lumbar spinal degeneration disease. Yonsei Med J, 2015, 56(4): 1051-1059.
|
7. |
Ohtori S, Mannoji C, Orita S, et al. Mini-open anterior retroperitoneal lumbar interbody fusion: Oblique lateral interbody fusion for degenerated lumbar spinal kyphoscoliosis. Asian Spine J, 2015, 9(4): 565-572.
|
8. |
Le TV, Baaj AA, Dakwar E, et al. Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine (Phila Pa 1976), 2012, 37(14): 1268-1273.
|
9. |
Marchi L, Abdala N, Oliveira L, et al. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine, 2013, 19(1): 110-118.
|
10. |
Schreiber JJ, Anderson PA, Rosas HG, et al. Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Joint Surg (Am), 2011, 93(11): 1057-1063.
|
11. |
沈俊宏, 王建, 刘超, 等. 斜外侧腰椎间融合术治疗退变性腰椎疾病的并发症和早期临床结果. 中国脊柱脊髓杂志, 2018, 28(5): 397-404.
|
12. |
Dua K, Kepler CK, Huang RC, et al. Vertebral body fracture after anterolateral instrumentation and interbody fusion in two osteoporotic patients. Spine J, 2010, 10(9): e11-15.
|
13. |
Brier-Jones JE, Palmer DK, Ĭnceoğlu S, et al. Vertebral body fractures after transpsoas interbody fusion procedures. Spine J, 2011, 11(11): 1068-1072.
|
14. |
Le TV, Smith DA, Greenberg MS, et al. Complications of lateral plating in the minimally invasive lateral transpsoas approach. J Neurosurg Spine, 2012, 16(3): 302-307.
|
15. |
Tempel ZJ, Gandhoke GS, Okonkwo DO, et al. Impaired bone mineral density as a predictor of graft subsidence following minimally invasive transpsoas lateral lumbar interbody fusion. Eur Spine J, 2015, 24 Suppl 3: 414-419.
|
16. |
McCoy S, Tundo F, Chidambaram S, et al. Clinical considerations for spinal surgery in the osteoporotic patient: A comprehensive review. Clin Neurol Neurosurg, 2019, 180: 40-47.
|
17. |
Pennington Z, Ehresman J, Lubelski D, et al. Assessing underlying bone quality in spine surgery patients: a narrative review of dual-energy X-ray absorptiometry (DXA) and alternatives. Spine J, 2021, 21(2): 321-331.
|
18. |
Zou D, Li W, Deng C, et al. The use of CT Hounsfield unit values to identify the undiagnosed spinal osteoporosis in patients with lumbar degenerative diseases. Eur Spine J, 2019, 28(8): 1758-1766.
|
19. |
Sakai Y, Takenaka S, Matsuo Y, et al. Hounsfield unit of screw trajectory as a predictor of pedicle screw loosening after single level lumbar interbody fusion. J Orthop Sci, 2018, 23(5): 734-738.
|
20. |
Okano I, Jones C, Salzmann SN, et al. Endplate volumetric bone mineral density measured by quantitative computed tomography as a novel predictive measure of severe cage subsidence after standalone lateral lumbar fusion. Eur Spine J, 2020, 29(5): 1131-1140.
|
21. |
Liu J, Ding W, Yang D, et al. Modic changes (MCs) associated with endplate sclerosis can prevent cage subsidence in oblique lumbar interbody fusion (OLIF) stand-alone. World Neurosurg, 2020, 138: e160-e168.
|
22. |
Okano I, Jones C, Rentenberger C, et al. The association between endplate changes and risk for early severe cage subsidence among standalone lateral lumbar interbody fusion patients. Spine (Phila Pa 1976), 2020, 45(23): E1580-E1587.
|
23. |
Zou D, Sun Z, Zhou S, et al. Hounsfield units value is a better predictor of pedicle screw loosening than the T-score of DXA in patients with lumbar degenerative diseases. Eur Spine J, 2020, 29(5): 1105-1111.
|
24. |
Macki M, Anand SK, Surapaneni A, et al. Subsidence rates after lateral lumbar interbody fusion: A systematic review. World Neurosurg, 2019, 122: 599-606.
|
25. |
Abe K, Orita S, Mannoji C, et al. Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: Perspectives and indications from a retrospective, multicenter survey. Spine (Phila Pa 1976), 2017, 42(1): 55-62.
|
26. |
Oh KW, Lee JH, Lee JH, et al. The correlation between cage subsidence, bone mineral density, and clinical results in posterior lumbar interbody fusion. Clin Spine Surg, 2017, 30(6): E683-E689.
|
27. |
Cho JH, Hwang CJ, Kim H, et al. Effect of osteoporosis on the clinical and radiological outcomes following one-level posterior lumbar interbody fusion. J Orthop Sci, 2018, 23(6): 870-877.
|
28. |
Tempel ZJ, McDowell MM, Panczykowski DM, et al. Graft subsidence as a predictor of revision surgery following stand-alone lateral lumbar interbody fusion. J Neurosurg Spine, 2018, 28(1): 50-56.
|