1. |
Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater, 2017, 3(3): 278-314.
|
2. |
McDermott AM, Herberg S, Mason DE, et al. Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Sci Transl Med, 2019, 11(495): eaav7756. doi: 10.1126/scitranslmed.aav7756.
|
3. |
Ashman O, Phillips AM. Treatment of non-unions with bone defects: which option and why? Injury, 2013, 44 Suppl 1: S43-45.
|
4. |
Bhumiratana S, Bernhard JC, Alfi DM, et al. Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med, 2016, 8(343): 343ra83. doi: 10.1126/scitranslmed.aad5904.
|
5. |
García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 2015, 81: 112-121.
|
6. |
Bose S, Sarkar N. Natural medicinal compounds in bone tissue engineering. Trends Biotechnol, 2020, 38(4): 404-417.
|
7. |
吕维加, 李朝阳. 可注射骨修复材料的研发与展望. 骨科临床与研究杂志, 2021, 6(1): 1-6, 19.
|
8. |
Askari M, Afzali Naniz M, Kouhi M, et al. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci, 2021, 9(3): 535-573.
|
9. |
Zhang Y, Li Z, Guan J, et al. Hydrogel: A potential therapeutic material for bone tissue engineering. AIP Advances, 2021, 11(1): 010701. doi: 10.1063/5.0035504.
|
10. |
Gong JP, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength. Adv Mater, 2003, 15(14): 1155-1158.
|
11. |
Haraguchi K, Takehisa T. Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de‐swelling properties. Advanced materials, 2002, 14(16): 1120-1124.
|
12. |
Zhang X, Huang P, Jiang G, et al. A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis. Mater Sci Eng C Mater Biol Appl, 2021, 121: 111868. doi: 10.1016/j.msec.2021.111868.
|
13. |
Li A, Xu H, Yu P, et al. Injectable hydrogels based on gellan gum promotes in situ mineralization and potential osteogenesis. European Polymer Journal, 2020, 141: 110091. doi: 10.1016/j.eurpolymj.2020.110091.
|
14. |
Xu M, Qin M, Zhang X, et al. Porous PVA/SA/HA hydrogels fabricated by dual-crosslinking method for bone tissue engineering. J Biomater Sci Polym Ed, 2020, 31(6): 816-831.
|
15. |
Bi S, Wang P, Hu S, et al. Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair. Carbohydr Polym, 2019, 224: 115176. doi: 10.1016/j.carbpol.2019.115176.
|
16. |
Dorozhkin SV. A detailed history of calcium orthophosphates from 1770s till 1950. Mater Sci Eng C Mater Biol Appl, 2013, 33(6): 3085-3110.
|
17. |
Wang Y, Cao X, Ma M, et al. A gelMA-PEGDA-nHA composite hydrogel for bone tissue engineering. Materials (Basel), 2020, 13(17): 3735. doi: 10.3390/ma13173735.
|
18. |
Liu C, Wu J, Gan D, et al. The characteristics of mussel-inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit. J Biomed Mater Res B Appl Biomater, 2020, 108(5): 1814-1825.
|
19. |
Nie L, Wu Q, Long H, et al. Development of chitosan/gelatin hydrogels incorporation of biphasic calcium phosphate nanoparticles for bone tissue engineering. J Biomater Sci Polym Ed, 2019, 30(17): 1636-1657.
|
20. |
Sen KS, Duarte Campos DF, Köpf M, et al. The effect of addition of calcium phosphate particles to hydrogel-based composite materials on stiffness and differentiation of mesenchymal stromal cells toward osteogenesis. Adv Healthc Mater, 2018, 7(18): e1800343. doi: 10.1002/adhm.201800343.
|
21. |
Ye Q, Zhang Y, Dai K, et al. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. J Mater Sci Mater Med, 2020, 31(9): 77. doi: 10.1007/s10856-020-06413-6.
|
22. |
Killion JA, Kehoe S, Geever LM, et al. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation. Mater Sci Eng C Mater Biol Appl, 2013, 33(7): 4203-4212.
|
23. |
Wu J, Zheng K, Huang X, et al. Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomater, 2019, 91: 60-71.
|
24. |
Dawson JI, Oreffo RO. Clay: new opportunities for tissue regeneration and biomaterial design. Adv Mater, 2013, 25(30): 4069-4086.
|
25. |
Mihaila SM, Gaharwar AK, Reis RL, et al. The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials, 2014, 35(33): 9087-9099.
|
26. |
Xavier JR, Thakur T, Desai P, et al. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano, 2015, 9(3): 3109-3118.
|
27. |
Guggenheim S, Martin R. Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays and clay minerals, 1995, 43(2): 255-256.
|
28. |
Han X, Xu H, Che L, et al. Application of inorganic nanocomposite hydrogels in bone tissue engineering. iScience, 2020, 23(12): 101845. doi: 10.1016/j.isci.2020.101845.
|
29. |
Jin Y, Liu C, Chai W, et al. Self-supporting nanoclay as internal scaffold material for direct printing of soft hydrogel composite structures in air. ACS Appl Mater Interfaces, 2017, 9(20): 17456-17465.
|
30. |
Gaharwar AK, Schexnailder PJ, Kline BP, et al. Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomater, 2011, 7(2): 568-577.
|
31. |
Liu B, Li J, Lei X, et al. Cell-loaded injectable gelatin/alginate/LAPONITE® nanocomposite hydrogel promotes bone healing in a critical-size rat calvarial defect model. RSC Advances, 2020, 10(43): 25652-25661.
|
32. |
Ou Q, Huang K, Fu C, et al. Nanosilver-incorporated halloysite nanotubes/gelatin methacrylate hybrid hydrogel with osteoimmunomodulatory and antibacterial activity for bone regeneration. Chemical Engineering Journal, 2020, 382: 123019. doi: 10.1016/j.cej.2019.123019.
|
33. |
Pietraszek A, Ledwójcik G, Lewandowska-Łańcucka J, et al. Bioactive hydrogel scaffolds reinforced with alkaline-phosphatase containing halloysite nanotubes for bone repair applications. Int J Biol Macromol, 2020, 163: 1187-1195.
|
34. |
Cui ZK, Kim S, Baljon JJ, et al. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun, 2019, 10(1): 3523. doi: 10.1038/s41467-019-11511-3.
|
35. |
Lim K, Hexiu J, Kim J, et al. Effects of electromagnetic fields on osteogenesis of human alveolar bone-derived mesenchymal stem cells. Biomed Res Int, 2013, 2013: 296019. doi: 10.1155/2013/296019.
|
36. |
McCullen SD, McQuilling JP, Grossfeld RM, et al. Application of low-frequency alternating current electric fields via interdigitated electrodes: effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells. Tissue Eng Part C Methods, 2010, 16(6): 1377-1386.
|
37. |
Min JH, Patel M, Koh WG. Incorporation of conductive materials into hydrogels for tissue engineering applications. Polymers (Basel), 2018, 10(10): 1078. doi: 10.3390/polym10101078.
|
38. |
Guo B, Ma PX. Conducting polymers for tissue engineering. Biomacromolecules, 2018, 19(6): 1764-1782.
|
39. |
Zare M, Ramezani Z, Rahbar N. Development of zirconia nanoparticles-decorated calcium alginate hydrogel fibers for extraction of organophosphorous pesticides from water and juice samples: Facile synthesis and application with elimination of matrix effects. J Chromatogr A, 2016, 1473: 28-37.
|
40. |
Paquet C, de Haan HW, Leek DM, et al. Clusters of superparamagnetic iron oxide nanoparticles encapsulated in a hydrogel: a particle architecture generating a synergistic enhancement of the T2 relaxation. ACS Nano, 2011, 5(4): 3104-3112.
|
41. |
Xu L, Li X, Takemura T, et al. Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel. J Nanobiotechnology, 2012, 10: 16. doi: 10.1186/1477-3155-10-16.
|
42. |
Xing R, Liu K, Jiao T, et al. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater, 2016, 28(19): 3669-3676.
|
43. |
Ribeiro M, Ferraz MP, Monteiro FJ, et al. Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration. Nanomedicine, 2017, 13(1): 231-239.
|
44. |
Heo DN, Ko WK, Bae MS, et al. Enhanced bone regeneration with a gold nanoparticle-hydrogel complex. J Mater Chem B, 2014, 2(11): 1584-1593.
|
45. |
Celikkin N, Mastrogiacomo S, Walboomers XF, et al. Enhancing X-ray attenuation of 3D printed gelatin methacrylate (GelMA) hydrogels utilizing gold nanoparticles for bone tissue engineering applications. Polymers (Basel), 2019, 11(2): 367. doi: 10.3390/polym11020367.
|
46. |
Arvizo RR, Bhattacharyya S, Kudgus RA, et al. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev, 2012, 41(7): 2943-2970.
|
47. |
Paun IA, Popescu RC, Calin BS, et al. 3D biomimetic magnetic structures for static magnetic field stimulation of osteogenesis. Int J Mol Sci, 2018, 19(2): 495. doi: 10.3390/ijms19020495.
|
48. |
Uskoković V, Graziani V, Wu VM, et al. Gold is for the mistress, silver for the maid: Enhanced mechanical properties, osteoinduction and antibacterial activity due to iron doping of tricalcium phosphate bone cements. Mater Sci Eng C Mater Biol Appl, 2019, 94: 798-810.
|
49. |
Lin HY, Huang HY, Shiue SJ, et al. Osteogenic effects of inductive coupling magnetism from magnetic 3D printed hydrogel scaffold. Journal of Magnetism and Magnetic Materials, 2020, 504: 166680. doi: 10.1016/j.jmmm.2020.166680.
|
50. |
Farzaneh S, Hosseinzadeh S, Samanipour R, et al. Fabrication and characterization of cobalt ferrite magnetic hydrogel combined with static magnetic field as a potential bio-composite for bone tissue engineering. Journal of Drug Delivery Science and Technology, 2021, 64: 102525. doi: 10.1016/j.jddst.2021.102525.
|
51. |
Lee JH, Shin YC, Lee SM, et al. Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep, 2015, 5: 18833. doi: 10.1038/srep18833.
|
52. |
Xue D, Chen E, Zhong H, et al. Immunomodulatory properties of graphene oxide for osteogenesis and angiogenesis. Int J Nanomedicine, 2018, 13: 5799-5810.
|
53. |
Mohammadrezaei D, Golzar H, Rezai Rad M, et al. In vitro effect of graphene structures as an osteoinductive factor in bone tissue engineering: A systematic review. J Biomed Mater Res A, 2018, 106(8): 2284-2343.
|
54. |
Kang ES, Kim DS, Suhito IR, et al. Guiding osteogenesis of mesenchymal stem cells using carbon-based nanomaterials. Nano convergence, 2017, 4(1): 1-14.
|
55. |
Pei B, Wang W, Dunne N, et al. Applications of carbon nanotubes in bone tissue regeneration and engineering: superiority, concerns, current advancements, and prospects. Nanomaterials, 2019, 9(10): 1501. doi: 10.3390/nano9101501.
|
56. |
Cha C, Shin SR, Gao X, et al. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small, 2014, 10(3): 514-523.
|
57. |
Zhou M, Lozano N, Wychowaniec JK, et al. Graphene oxide: A growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta biomaterialia, 2019, 96: 271-280.
|
58. |
Nosrati H, Sarraf Mamoory R, Svend Le DQ, et al. Fabrication of gelatin/hydroxyapatite/3D-graphene scaffolds by a hydrogel 3D-printing method. Materials Chemistry and Physics, 2020, 239(1): 122305. doi: 10.1016/j.matchemphys.2019.122305.
|
59. |
Jiao D, Zheng A, Liu Y, et al. Bidirectional differentiation of BMSCs induced by a biomimetic procallus based on a gelatin-reduced graphene oxide reinforced hydrogel for rapid bone regeneration. Bioact Mater, 2020, 6(7): 2011-2028.
|
60. |
Li X, Chen J, Xu Z, et al. Osteoblastic differentiation of stem cells induced by graphene oxide-hydroxyapatite-alginate hydrogel composites and construction of tissue-engineered bone. J Mater Sci Mater Med, 2020, 31(12): 125. doi: 10.1007/s10856-020-06467-6.
|
61. |
Cui H, Yu Y, Li X, et al. Direct 3D printing of a tough hydrogel incorporated with carbon nanotubes for bone regeneration. J Mater Chem B, 2019, 7(45): 7207-7217.
|
62. |
Pelto J, Björninen M, Pälli A, et al. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng Part A, 2013, 19(7-8): 882-892.
|
63. |
Chen J, Yu M, Guo B, et al. Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration. J Colloid Interface Sci, 2018, 514: 517-527.
|
64. |
Yang J, Choe G, Yang S, et al. Polypyrrole-incorporated conductive hyaluronic acid hydrogels. Biomater Res, 2016, 20: 31. doi: 10.1186/s40824-016-0078-y.
|
65. |
Sawyer SW, Dong P, Venn S, et al. Conductive gelatin methacrylate-poly (aniline) hydrogel for cell encapsulation. Biomedical Physics & Engineering Express, 2017, 4(1): 015005. doi: 10.1088/2057-1976/aa91f9.
|
66. |
Liu X, George MN, Li L, et al. Injectable electrical conductive and phosphate releasing gel with two-dimensional black phosphorus and carbon nanotubes for bone tissue engineering. ACS Biomater Sci Eng, 2020, 6(8): 4653-4665.
|
67. |
Gao X, Shi Z, Liu C, et al. Inelastic behaviour of bacterial cellulose hydrogel: in aqua cyclic tests. Polymer Testing, 2015, 44: 82-92.
|
68. |
Lin S, Cao C, Wang Q, et al. Design of stiff, tough and stretchy hydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement. Soft Matter, 2014, 10(38): 7519-7527.
|
69. |
Illeperuma WRK, Sun JY, Suo Z, et al. Fiber-reinforced tough hydrogels. Extreme Mechanics Letters, 2014, 1: 90-96.
|
70. |
Agrawal A, Rahbar N, Calvert PD. Strong fiber-reinforced hydrogel. Acta Biomater, 2013, 9(2): 5313-5318.
|
71. |
Xu W, Ma J, Jabbari E. Material properties and osteogenic differentiation of marrow stromal cells on fiber-reinforced laminated hydrogel nanocomposites. Acta Biomater, 2010, 6(6): 1992-2002.
|
72. |
Dubey N, Ferreira JA, Daghrery A, et al. Highly tunable bioactive fiber-reinforced hydrogel for guided bone regeneration. Acta Biomater, 2020, 113: 164-176.
|