1. |
Kwon H, Brown WE, Lee CA, et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol, 2019, 15(9): 550-570.
|
2. |
Rong Y, Zhang J, Jiang D, et al. Hypoxic pretreatment of small extracellular vesicles mediates cartilage repair in osteoarthritis by delivering miR-216a-5p. Acta Biomater, 2021, 122: 325-342.
|
3. |
Chen W, Xu Y, Li H, et al. Tanshinone ⅡA delivery silk fibroin scaffolds significantly enhance articular cartilage defect repairing via promoting cartilage regeneration. ACS Appl Mater Interfaces, 2020, 12(19): 21470-21480.
|
4. |
Castro-Viñuelas R, Sanjurjo-Rodríguez C, Piñeiro-Ramil M, et al. Induced pluripotent stem cells for cartilage repair: current status and future perspectives. Eur Cell Mater, 2018, 36: 96-109.
|
5. |
Hong H, Seo YB, Kim DY, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials, 2020, 232: 119679. doi: 10.1016/j.biomaterials.2019.119679.
|
6. |
邓凯烽, 朱英, 廖子龙, 等. 基于复杂网络技术分析中药外用治疗膝骨性关节炎的组方用药规律. 时珍国医国药, 2021, 32(1): 73-76.
|
7. |
涂鹏程, 郭杨, 马勇, 等. 威灵仙提取物可促进体外牵张应力环境下软骨细胞表型的维持. 中国组织工程研究, 2020, 24(8): 1182-1187.
|
8. |
Pan YL, Ma Y, Guo Y, et al. Effects of clematis chinensis osbeck mediated by low-intensity pulsed ultrasound on transforming growth factor-β/Smad signaling in rabbit articular chondrocytes. J Med Ultrason (2001), 2019, 46(2): 177-186.
|
9. |
Khademolqorani S, Tavanai H, Chronakis IS, et al. The determinant role of fabrication technique in final characteristics of scaffolds for tissue engineering applications: A focus on silk fibroin-based scaffolds. Mater Sci Eng C Mater Biol Appl, 2021, 122: 111867. doi: 10.1016/j.msec.2021.111867.
|
10. |
Gavrilova NA, Borzenok SA, Revishchin AV, et al. The effect of biodegradable silk fibroin-based scaffolds containing glial cell line-derived neurotrophic factor (GDNF) on the corneal regeneration process. Int J Biol Macromol, 2021, 185: 264-276.
|
11. |
Drachuk I, Harbaugh S, Chávez JL, et al. Improving the activity of DNA-encoded sensing elements through confinement in silk microcapsules. ACS Appl Mater Interfaces, 2020, 12(43): 48329-48339.
|
12. |
Li Q, Xu S, Feng Q, et al. 3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration. Bioact Mater, 2021, 6(10): 3396-3410.
|
13. |
Sun W, Gregory DA, Tomeh MA, et al. Silk fibroin as a functional Biomaterial for tissue engineering. Int J Mol Sci, 2021, 22(3): 1499. doi: 10.3390/ijms22031499.
|
14. |
涂鹏程, 郭杨, 马勇, 等. 模拟微重力培养环境下载威灵仙丝素蛋白微球对软骨细胞表型分化的影响. 中华中医药杂志, 2021, 36(4): 2038-2043.
|
15. |
Qu J, Wang L, Niu L, et al. Porous silk fibroin microspheres sustainably releasing bioactive basic fibroblast growth factor. Materials (Basel), 2018, 11(8): 1280. doi: 10.3390/ma11081280.
|
16. |
李维嘉, 王志强, 许泽群, 等. 分光光度法测定灵芝孢子油中总三萜的含量. 食品研究与开发, 2019, 40(17): 165-170.
|
17. |
Suderman MT, Temeyer KB, Schlechte KG, et al. Three-dimensional culture of rhipicephalus (Boophilus) microplus BmⅧ-SCC cells on multiple synthetic scaffold systems and in rotating bioreactors. Insects, 2021, 12(8): 747. doi: 10.3390/insects12080747.
|
18. |
Ao Y, Li Z, You Q, et al. The yse of particulated juvenile allograft cartilage for the repair of porcine articular cartilage defects. Am J Sports Med, 2019, 47(10): 2308-2315.
|
19. |
Campos Y, Almirall A, Fuentes G, et al. Tissue engineering: an alternative to repair cartilage. Tissue Eng Part B Rev, 2019, 25(4): 357-373.
|
20. |
Pan T, Cheng TF, Jia YR, et al. Anti-rheumatoid arthritis effects of traditional Chinese herb couple in adjuvant-induced arthritis in rats. J Ethnopharmacol, 2017, 205: 1-7.
|
21. |
Xiong Y, Ma Y, Kodithuwakku ND, et al. Protective effects of clematichinenoside AR against inflammation and cytotoxicity induced by human tumor necrosis factor-α. Int Immunopharmacol, 2019, 75: 105563. doi: 10.1016/j.intimp.2019.04.010.
|
22. |
Lin TF, Wang L, Zhang Y, et al. Uses, chemical compositions, pharmacological activities and toxicology of Clematidis Radix et Rhizome-a Review. J Ethnopharmacol, 2021, 270: 113831.doi: 10.1016/j.jep.2021.113831.
|
23. |
潘娅岚, 马勇, 涂鹏程, 等. 低频超声促透威灵仙对早期兔膝骨关节炎的干预作用及机制研究. 中国中西医结合杂志, 2020, 40(4): 470-475.
|
24. |
Qian KY, Song Y, Yan X, et al. Injectable ferrimagnetic silk fibroin hydrogel for magnetic hyperthermia ablation of deep tumor. Biomaterials, 2020, 259: 120299. doi: 10.1016/j.biomaterials.2020.120299.
|
25. |
Zhao Y, Zhu ZS, Guan J, et al. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels. Acta Biomater, 2021, 125: 57-71.
|
26. |
Zhang W, Chen L, Chen J, et al. Silk fibroin biomaterial shows safe and effective wound healing in animal models and a randomized controlled clinical trial. Adv Healthc Mater, 2017, 6(10). doi: 10.1002/adhm.201700121.
|
27. |
Crivelli B, Bari E, Perteghella S, et al. Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur J Pharm Biopharm, 2019, 137: 37-45.
|
28. |
Zhang X, Zhou J, Xu Y. Optimized parameters for the preparation of silk fibroin drug-loaded microspheres based on the response surface method and a genetic algorithm-backpropagation neural network model. J Biomed Mater Res B Appl Biomater, 2021, 109(1): 6-18.
|
29. |
Wuest SL, Caliò M, Wernas T, et al. Influence of mechanical unloading on articular chondrocyte dedifferentiation. Int J Mol Sci, 2018, 19(5): 1289. doi: 10.3390/ijms19051289.
|
30. |
Onitsuka K, Murata K, Kokubun T, et al. Effects of controlling abnormal joint movement on expression of MMP13 and TIMP-1 in osteoarthritis. Cartilage, 2020, 11(1): 98-107.
|
31. |
Maenohara Y, Chijimatsu R, Tachibana N, et al. Lubricin contributes to homeostasis of articular cartilage by modulating differentiation of superficial zone cells. J Bone Miner Res, 2021, 36(4): 792-802.
|