1. |
Oryan A, Kamali A, Moshiri A, et al. Role of mesenchymal stem cells in bone regenerative medicine: What is the evidence? Cells Tissues Organs, 2017, 204(2): 59-83.
|
2. |
Aicher WK, Bühring HJ, Hart M, et al. Regeneration of cartilage and bone by defined subsets of mesenchymal stromal cells-potential and pitfalls. Adv Drug Deliv Rev, 2011, 63(4-5): 342-351.
|
3. |
Marie PJ, Fromigué O. Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen Med, 2006, 1(4): 539-548.
|
4. |
Shih YR, Chen CN, Tsai SW, et al. Growth of mesenchymal stem cells on electrospun type Ⅰ collagen nanofibers. Stem Cells, 2006, 24(11): 2391-2397.
|
5. |
Bruder SP, Kraus KH, Goldberg VM, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg (Am), 1998, 80(7): 985-996.
|
6. |
袁宇, 徐林. 骨髓间充质干细胞联合3D生物打印技术治疗骨缺损的研究进展. 中国医学物理学杂志, 2021, 38(1): 110-126.
|
7. |
Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 2003, 75(3): 389-397.
|
8. |
Maruyama M, Moeinzadeh S, Guzman RA, et al. The efficacy of lapine preconditioned or genetically modified IL4 over-expressing bone marrow-derived mesenchymal stromal cells in corticosteroid-associated osteonecrosis of the femoral head in rabbits. Biomaterials, 2021, 275: 120972. doi: 10.1016/j.biomaterials.2021.120972.
|
9. |
Maruyama M, Rhee C, Utsunomiya T, et al. Modulation of the inflammatory response and bone healing. Front Endocrinol (Lausanne), 2020, 11: 386. doi: 10.3389/fendo.2020.00386.
|
10. |
Fujita T, Azuma Y, Fukuyama R, et al. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol, 2004, 166(1): 85-95.
|
11. |
史东梅, 董明, 陆颖, 等. PI3K/Akt信号通路与骨破坏: 问题与机制. 中国组织工程研究, 2020, 24(23): 3716-3722.
|
12. |
Peng XD, Xu PZ, Chen ML, et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev, 2003, 17(11): 1352-1365.
|
13. |
Kitching R, Wong MJ, Koehler D, et al. The RING-H2 protein RNF11 is differentially expressed in breast tumours and interacts with HECT-type E3 ligases. Biochim Biophys Acta, 2003, 1639(2): 104-112.
|
14. |
Azmi P, Seth A. RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation. Eur J Cancer, 2005, 41(16): 2549-2560.
|
15. |
Connor MK, Azmi PB, Subramaniam V, et al. Molecular characterization of ring finger protein 11. Mol Cancer Res, 2005, 3(8): 453-461.
|
16. |
Mattioni A, Castagnoli L, Santonico E. RNF11 at the crossroads of protein ubiquitination. Biomolecules, 2020, 10(11): 1538. doi: 10.3390/biom10111538.
|
17. |
Santonico E, Belleudi F, Panni S, et al. Multiple modification and protein interaction signals drive the Ring finger protein 11 (RNF11) E3 ligase to the endosomal compartment. Oncogene, 2010, 29(41): 5604-5618.
|
18. |
Malonis RJ, Fu W, Jelcic MJ, et al. RNF11 sequestration of the E3 ligase SMURF2 on membranes antagonizes SMAD7 down-regulation of transforming growth factor β signaling. J Biol Chem, 2017, 292(18): 7435-7451.
|
19. |
Budhidarmo R, Zhu J, Middleton AJ, et al. The RING domain of RING Finger 11 (RNF11) protein binds Ubc13 and inhibits formation of polyubiquitin chains. FEBS Lett, 2018, 592(8): 1434-1444.
|
20. |
Gao Y, Ganss BW, Wang H, et al. The RING finger protein RNF11 is expressed in bone cells during osteogenesis and is regulated by Ets1. Exp Cell Res, 2005, 304(1): 127-135.
|
21. |
Subramaniam V, Li H, Wong M, et al. The RING-H2 protein RNF11 is overexpressed in breast cancer and is a target of Smurf2 E3 ligase. Br J Cancer, 2003, 89(8): 1538-1544.
|
22. |
Pranski EL, Dalal NV, Herskowitz JH, et al. Neuronal RING finger protein 11 (RNF11) regulates canonical NF-κB signaling. J Neuroinflammation, 2012, 9: 67. doi: 10.1186/1742-2094-9-67.
|
23. |
Pranski EL, Dalal NV, Sanford CV, et al. RING finger protein 11 (RNF11) modulates susceptibility to 6-OHDA-induced nigral degeneration and behavioral deficits through NF-κB signaling in dopaminergic cells. Neurobiol Dis, 2013, 54: 264-279.
|
24. |
池玉磊, 卜宪敏, 查玉梅, 等. 骨髓间充质干细胞复合支架材料治疗骨缺损: 研究现状及前景展望. 中国组织工程研究, 2019, 23(29): 4749-4756.
|
25. |
Jo H, Mondal S, Tan D, et al. Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc Natl Acad Sci U S A, 2012, 109(26): 10581-10586.
|
26. |
Shembade N, Parvatiyar K, Harhaj NS, et al. The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling. EMBO J, 2009, 28(5): 513-522.
|
27. |
Zhao SJ, Kong FQ, Jie J, et al. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway. Theranostics, 2020, 10(1): 17-35.
|
28. |
Yang C, Liu X, Zhao K, et al. miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects. Stem Cell Res Ther, 2019, 10(1): 65. doi: 10.1186/s13287-019-1168-2.
|