1. |
Schmitz MR, Murtha AS, Clohisy JC, et al. Developmental dysplasia of the hip in adolescents and young adults. J Am Acad Orthop Surg, 2020, 28(3): 91-101.
|
2. |
Harris MD, Shepherd MC, SONG K, et al. The biomechanical disadvantage of dysplastic hips. J Orthop Res, 2021. doi: 10.1002/jor.25165.
|
3. |
Domb BG, Chen SL, Go CC, et al. Predictors of clinical outcomes after hip arthroscopy: 5-year follow-up analysis of 1038 patients. Am J Sports Med, 2021, 49(1): 112-120.
|
4. |
Kraeutler MJ, Safran MR, Scillia AJ, et al. A contemporary look at the evaluation and treatment of adult borderline and frank hip dysplasia. Am J Sports Med, 2020, 48(9): 2314-2323.
|
5. |
Brusalis CM, Peck J, Wilkin GP, et al. Periacetabular osteotomy as a salvage procedure: Early outcomes in patients treated for iatrogenic hip instability. J Bone Joint Surg (Am), 2020, 102(Suppl2): 73-79.
|
6. |
Ali M, Malviya A. Complications and outcome after periacetabular osteotomy-influence of surgical approach. Hip Int, 2020, 30(1): 4-15.
|
7. |
Link TM, Stahl R, Woertler K. Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol, 2007, 17(5): 1135-1146.
|
8. |
Crockett R, Grubelnik A, Roos S, et al. Biochemical composition of the superficial layer of articular cartilage. J Biomed Mater Res A, 2007, 82(4): 958-964.
|
9. |
Hingsammer AM, Miller PE, Millis MB, et al. Does periacetabular osteotomy have depth-related effects on the articular cartilage of the hip? Clin Orthop Relat Res, 2015, 473(12): 3735-3743.
|
10. |
Cunningham T, Jessel R, Zurakowski D, et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg (Am), 2006, 88(7): 1540-1548.
|
11. |
Jessel RH, Zurakowski D, Zilkens C, et al. Radiographic and patient factors associated with pre-radiographic osteoarthritis in hip dysplasia. J Bone Joint Surg (Am), 2009, 91(5): 1120-1129.
|
12. |
Melkus G, Beaulé PE, Wilkin G, et al. What is the correlation among dGEMRIC, T1ρ, and T2* quantitative MRI cartilage mapping techniques in developmental hip dysplasia? Clin Orthop Relat Res, 2021, 479(5): 1016-1024.
|
13. |
Kim SD, Jessel R, Zurakowski D, et al. Anterior delayed gadolinium-enhanced MRI of cartilage values predict joint failure after periacetabular osteotomy. Clin Orthop Relat Res, 2012, 470(12): 3332-3341.
|
14. |
Fernquest S, Palmer A, Gammer B, et al. Compositional MRI of the hip: Reproducibility, effect of joint unloading, and comparison of T2 relaxometry with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. Cartilage, 2021, 12(4): 418-430.
|
15. |
Hesper T, Bittersohl B, Schleich C, et al. Automatic cartilage segmentation for delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: A feasibility study. Cartilage, 2020, 11(1): 32-37.
|
16. |
Wyatt MC, Beck M. The management of the painful borderline dysplastic hip. J Hip Preserv Surg, 2018, 5(2): 105-112.
|
17. |
Murata Y, Fukase N, Dornan G, et al. Arthroscopic treatment of femoroacetabular impingement in patients with and without borderline developmental dysplasia of the hip: A systematic review and meta-analysis. Orthop J Sports Med, 2021, 9(8): 23259671211015973. doi: 10.1177/23259671211015973.
|
18. |
Millis MB, Kim YJ. Rationale of osteotomy and related procedures for hip preservation: a review. Clin Orthop Relat Res, 2002, (405): 108-121.
|
19. |
Kuroda Y, Saito M, Sunil Kumar KH, et al. Hip arthroscopy and borderline developmental dysplasia of the hip: A systematic review. Arthroscopy, 2020, 36(9): 2550-2567.
|
20. |
Wiberg G. Studies on dysplastic acetabula and congenital subluxation of the hip joint with special reference to the complication of osteoarthritis. Acta Chir Scand, 1939, 83(Suppl58): 1-132.
|
21. |
Fredensborg N. The CE angle of normal hips. Acta Orthop Scand, 1976, 47(4): 403-405.
|
22. |
Garabekyan T, Ashwell Z, Chadayammuri V, et al. Lateral acetabular coverage predicts the size of the hip labrum. Am J Sports Med, 2016, 44(6): 1582-1589.
|
23. |
Wyatt M, Weidner J, Pfluger D, et al. The femoro-epiphyseal acetabular roof (FEAR) index: A new measurement associated with instability in borderline hip dysplasia? Clin Orthop Relat Res, 2017, 475(3): 861-869.
|
24. |
Wong TY, Jesse MK, Jensen A, et al. Upsloping lateral sourcil: a radiographic finding of hip instability. J Hip Preserv Surg, 2018, 5(4): 435-442.
|
25. |
Higashihira S, Kobayashi N, Choe H, et al. Use of a 3D virtually reconstructed patient-specific model to examine the effect of acetabular labral interference on hip range of motion. Orthop J Sports Med, 2020, 8(11): 2325967120964465. doi: 10.1177/2325967120964465.
|
26. |
Wilkin GP, Ibrahim MM, Smit KM, et al. A contemporary definition of hip dysplasia and structural instability: Toward a comprehensive classification for acetabular dysplasia. J Arthroplasty, 2017, 32(9S): S20-S27.
|
27. |
Nepple JJ, Wells J, Ross JR, et al. Three patterns of acetabular deficiency are common in young adult patients with acetabular dysplasia. Clin Orthop Relat Res, 2017, 475(4): 1037-1044.
|
28. |
Nepple JJ, Fowler LM, Larson CM. Decision-making in the borderline hip. Sports Med Arthrosc Rev, 2021, 29(1): 15-21.
|
29. |
Bartlett JD, Lawrence JE, Khanduja V. Virtual reality hip arthroscopy simulator demonstrates sufficient face validity. Knee Surg Sports Traumatol Arthrosc, 2019, 27(10): 3162-3167.
|
30. |
Byrd JW, Jones KS. Hip arthroscopy in the presence of dysplasia. Arthroscopy, 2003, 19(10): 1055-1060.
|
31. |
Chaharbakhshi EO, Perets I, Ashberg L, et al. Do ligamentum teres tears portend inferior outcomes in patients with borderline dysplasia undergoing hip arthroscopic surgery? A match-controlled study with a minimum 2-year follow-up. Am J Sports Med, 2017, 45(11): 2507-2516.
|
32. |
Chandrasekaran S, Darwish N, Martin TJ, et al. Arthroscopic capsular plication and labral seal restoration in borderline hip dysplasia: 2-year clinical outcomes in 55 cases. Arthroscopy, 2017, 33(7): 1332-1340.
|
33. |
Yeung M, Kowalczuk M, Simunovic N, et al. Hip arthroscopy in the setting of hip dysplasia: A systematic review. Bone Joint Res, 2016, 5(6): 225-231.
|
34. |
Fukui K, Trindade CA, Briggs KK, et al. Arthroscopy of the hip for patients with mild to moderate developmental dysplasia of the hip and femoroacetabular impingement: Outcomes following hip arthroscopy for treatment of chondrolabral damage. Bone Joint J, 2015, 97-B(10): 1316-1321.
|
35. |
Ding Z, Sun Y, Liu S, et al. Hip arthroscopic surgery in borderline developmental dysplastic hips: A systematic review. Am J Sports Med, 2019, 47(10): 2494-2500.
|
36. |
Swarup I, Zaltz I, Robustelli S, et al. Outcomes of periacetabular osteotomy for borderline hip dysplasia in adolescent patients. J Hip Preserv Surg, 2020, 7(2): 249-255.
|
37. |
Benali Y, Katthagen BD. Hip subluxation as a complication of arthroscopic debridement. Arthroscopy, 2009, 25(4): 405-407.
|
38. |
McClincy MP, Wylie JD, Kim YJ, et al. Periacetabular osteotomy improves pain and function in patients with lateral center-edge angle between 18° and 25°, but are these hips really borderline dysplastic? Clin Orthop Relat Res, 2019, 477(5): 1145-1153.
|
39. |
Livermore AT, Anderson LA, Anderson MB, et al. Correction of mildly dysplastic hips with periacetabular osteotomy demonstrates promising outcomes, achievement of correction goals, and excellent five-year survivorship. Bone Joint J, 2019, 101-B(6_Supple_B): 16-22.
|
40. |
Murata Y, Fukase N, Martin M, et al. Comparison between hip arthroscopic surgery and periacetabular osteotomy for the treatment of patients with borderline developmental dysplasia of the hip: A systematic review. Orthop J Sports Med, 2021, 9(5): 23259671211007401. doi: 10.1177/23259671211007401.
|
41. |
Ziran N, Varcadipane J, Kadri O, et al. Ten- and 20-year survivorship of the hip after periacetabular osteotomy for acetabular dysplasia. J Am Acad Orthop Surg, 2019, 27(7): 247-255.
|
42. |
Ike H, Inaba Y, Kobayashi N, et al. Effects of rotational acetabular osteotomy on the mechanical stress within the hip joint in patients with developmental dysplasia of the hip: a subject-specific finite element analysis. Bone Joint J, 2015, 97-B(4): 492-497.
|
43. |
Ross JR, Zaltz I, Nepple JJ, et al. Arthroscopic disease classification and interventions as an adjunct in the treatment of acetabular dysplasia. Am J Sports Med, 2011, 39Suppl: 72S-78S.
|
44. |
Parvizi J, Bican O, Bender B, et al. Arthroscopy for labral tears in patients with developmental dysplasia of the hip: a cautionary note. J Arthroplasty, 2009, 24(6Suppl): 110-113.
|
45. |
Thanacharoenpanich S, Boyle MJ, Murphy RF, et al. Periacetabular osteotomy for developmental hip dysplasia with labral tears: is arthrotomy or arthroscopy required? J Hip Preserv Surg, 2018, 5(1): 23-33.
|
46. |
Cho YJ, Kim KI, Kwak SJ, et al. Long-term results of periacetabular rotational osteotomy concomitantly with arthroscopy in adult acetabular dysplasia. J Arthroplasty, 2020, 35(10): 2807-2812.
|
47. |
Hartig-Andreasen C, Troelsen A, Thillemann TM, et al. Risk factors for the need of hip arthroscopy following periacetabular osteotomy. J Hip Preserv Surg, 2015, 2(4): 374-384.
|
48. |
Hanke MS, Lerch TD, Schmaranzer F, et al. Complications of hip preserving surgery. EFORT Open Rev, 2021, 6(6): 472-486.
|
49. |
Billings S, Kang HJ, Cheng A, et al. Minimally invasive registration for computer-assisted orthopedic surgery: combining tracked ultrasound and bone surface points via the P-IMLOP algorithm. Int J Comput Assist Radiol Surg, 2015, 10(6): 761-771.
|
50. |
Xuyi W, Jianping P, Junfeng Z, et al. Application of three-dimensional computerised tomography reconstruction and image processing technology in individual operation design of developmental dysplasia of the hip patients. Int Orthop, 2016, 40(2): 255-265.
|
51. |
Shelton TJ, Monazzam S, Calafi A, et al. Preoperative 3D modeling and printing for guiding periacetabular osteotomy. J Pediatr Orthop, 2021, 41(3): 149-158.
|
52. |
许固军, 马明阳, 张帅, 等. Mako机器人辅助人工全髋关节置换术在发育性髋关节发育不良中的应用. 中国修复重建外科杂志, 2021, 35(10): 1233-1239.
|
53. |
Grupp RB, Murphy RJ, Hegeman RA, et al. Fast and automatic periacetabular osteotomy fragment pose estimation using intraoperatively implanted fiducials and single-view fluoroscopy. Phys Med Biol, 2020, 65(24): 245019. doi: 10.1088/1361-6560/aba089.
|
54. |
Zou Z, Chávez-Arreola A, Mandal P, et al. Optimization of the position of the acetabulum in a ganz periacetabular osteotomy by finite element analysis. J Orthop Res, 2013, 31(3): 472-479.
|
55. |
Langlotz F, Stucki M, Bächler R, et al. The first twelve cases of computer assisted periacetabular osteotomy. Comput Aided Surg, 1997, 2(6): 317-326.
|
56. |
Liu L, Siebenrock K, Nolte LP, et al. Computer-assisted planning, simulation, and navigation system for periacetabular osteotomy. Adv Exp Med Biol, 2018, 1093: 143-155.
|
57. |
Pflugi S, Vasireddy R, Lerch T, et al. Augmented marker tracking for peri-acetabular osteotomy surgery. Int J Comput Assist Radiol Surg, 2018, 13(2): 291-304.
|