- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China;
Citation: ZHOU Shengliang, SI Haibo, PENG Linbo, SHEN Bin. The role of chondrocyte mitochondrial biogenesis in the pathogenesis of osteoarthritis. Chinese Journal of Reparative and Reconstructive Surgery, 2022, 36(2): 242-248. doi: 10.7507/1002-1892.202109091 Copy
1. | Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ, 2003, 81(9): 646-656. |
2. | Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol, 2016, 12(7): 412-420. |
3. | Cram P, Lu X, Kates SL, et al. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991-2010. JAMA, 2012, 308(12): 1227-1236. |
4. | Li PA, Hou X, Hao S. Mitochondrial biogenesis in neurodegeneration. J Neurosci Res, 2017, 95(10): 2025-2029. |
5. | Popov LD. Mitochondrial biogenesis: An update. J Cell Mol Med, 2020, 24(9): 4892-4899. |
6. | Jamwal S, Blackburn JK, Elsworth JD. Pparγ/pgc1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther, 2021, 219: 107705. doi: 10.1016/j.pharmthera.2020.107705. |
7. | Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays in Biochem, 2010, 47: 69-84. |
8. | Mao X, Fu P, Wang L, et al. Mitochondria: Potential targets for osteoarthritis. Front Med (Lausanne), 2020, 7: 581402. doi: 10.3389/fmed.2020.581402. |
9. | Wang Y, Zhao X, Lotz M, et al. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheumatol, 2015, 67(8): 2141-2153. |
10. | Blanco FJ, López-Armada MJ, Maneiro E. Mitochondrial dysfunction in osteoarthritis. Mitochondrion, 2004, 4(5-6): 715-728. |
11. | Onuora S. Osteoarthritis: Chondrocyte clock maintains cartilage tissue. Nat Rev Rheumatol, 2016, 12(2): 71. doi: 10.1038/nrrheum.2015.183. |
12. | Mitrovic D, Quintero M, Stankovic A, et al. Cell density of adult human femoral condylar articular cartilage. Joints with normal and fibrillated surfaces. Lab Invest, 1983, 49(3): 309-316. |
13. | Blanco FJ, Guitian R, Vázquez-Martul E, et al. Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum, 1998, 41(2): 284-289. |
14. | Bullough PG. Osteoarthritis: pathogenesis and aetiology. Br J Rheumatol, 1984, 23(3): 166-169. |
15. | Otte P. Basic cell metabolism of articular cartilage. Manometric studies. Z Rheumatol, 1991, 50(5): 304-312. |
16. | Jahr H, Gunes S, Kuhn AR, et al. Bioreactor-controlled physoxia regulates TGF-β signaling to alter extracellular matrix synthesis by human chondrocytes. Int J Mol Sci, 2019, 20(7): 1715. doi: 10.3390/ijms20071715. |
17. | Wang Y, Chen LY, Liu-Bryan R. Mitochondrial biogenesis, activity, and DNA isolation in chondrocytes. Methods Mol Biol, 2021, 2245: 195-213. |
18. | Maneiro E, López-Armada MJ, de Andres MC, et al. Effect of nitric oxide on mitochondrial respiratory activity of human articular chondrocytes. Ann Rheum Dis, 2005, 64(3): 388-395. |
19. | Du K, Ramachandran A, McGill MR, et al. Induction of mitochondrial biogenesis protects against acetaminophen hepatotoxicity. Food Chem Toxicol, 2017, 108(Pt A): 339-350. |
20. | Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol, 2007, 47: 629-656. |
21. | Coppi L, Ligorio S, Mitro N, et al. Pgc1s and beyond: Disentangling the complex regulation of mitochondrial and cellular metabolism. Int J Mol Sci, 2021, 22(13): 6913. doi: 10.3390/ijms22136913. |
22. | Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, et al. The role of pgc-1α and mitochondrial biogenesis in kidney diseases. Biomolecules, 2020, 10(2): 347. doi: 10.3390/biom10020347. |
23. | Simmons EC, Scholpa NE, Schnellmann RG. Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative cns diseases. Exp Neurol, 2020, 329: 113309. doi: 10.1016/j.expneurol.2020.113309. |
24. | Dorn GW, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev, 2015, 29(19): 1981-1991. |
25. | Zhao X, Petursson F, Viollet B, et al. Peroxisome proliferator-activated receptor γ coactivator 1α and foxo3a mediate chondroprotection by amp-activated protein kinase. Arthritis Rheumatol, 2014, 66(11): 3073-3082. |
26. | Wang J, Wang K, Huang C, et al. SIRT3 activation by dihydromyricetin suppresses chondrocytes degeneration via maintaining mitochondrial homeostasis. Int J Biol Sci, 2018, 14(13): 1873-1882. |
27. | Liu D, Cai ZJ, Yang YT, et al. Mitochondrial quality control in cartilage damage and osteoarthritis: New insights and potential therapeutic targets. Osteoarthritis Cartilage, 2021. doi: 10.1016/j.joca.2021.10.009. |
28. | Soto-Hermida A, Fernández-Moreno M, Pértega-Díaz S, et al. Mitochondrial DNA haplogroups modulate the radiographic progression of spanish patients with osteoarthritis. Rheumatol Int, 2015, 35(2): 337-344. |
29. | Wang J, Li J, Song D, et al. Ampk: Implications in osteoarthritis and therapeutic targets. Am J Transl Res, 2020, 12(12): 7670-7681. |
30. | Hardie DG. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr, 2014, 34: 31-55. |
31. | Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol, 2018, 19(2): 121-135. |
32. | Carling D, Zammit VA, Hardie DG. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett, 1987, 223(2): 217-222. |
33. | Toyama EQ, Herzig S, Courchet J, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science, 2016, 351(6270): 275-281. |
34. | Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev, 2012, 11(2): 230-241. |
35. | Liu-Bryan R. Inflammation and intracellular metabolism: new targets in OA. Osteoarthritis Cartilage, 2015, 23(11): 1835-1842. |
36. | Chen LY, Wang Y, Terkeltaub R, et al. Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function. Osteoarthritis Cartilage, 2018, 26(11): 1539-1550. |
37. | Terkeltaub R, Yang B, Lotz M, et al. Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α. Arthritis Rheum, 2011, 63(7): 1928-1937. |
38. | Matsuzaki T, Matsushita T, Takayama K, et al. Disruption of sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis, 2014, 73(7): 1397-1404. |
39. | Tang BL. Sirt1 and the Mitochondria. Mol Cells, 2016, 39(2): 87-95. |
40. | Haigis MC, Guarente LP. Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev, 2006, 20(21): 2913-2921. |
41. | Shen P, Lin W, Ba X, et al. Quercetin-mediated SIRT1 activation attenuates collagen-induced mice arthritis. J Ethnopharmacol, 2021, 279: 114213. doi: 10.1016/j.jep.2021.114213. |
42. | Onyango P, Celic I, McCaffery JM, et al. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A, 2002, 99(21): 13653-13658. |
43. | Schwer B, North BJ, Frye RA, et al. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol, 2002, 158(4): 647-657. |
44. | He Y, Wu Z, Xu L, et al. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis. Cell Mol Life Sci, 2020, 77(19): 3729-3743. |
45. | He W, Newman JC, Wang MZ, et al. Mitochondrial sirtuins: regulators of protein acylation and metabolism. Trends Endocrinol Metab, 2012, 23(9): 467-476. |
46. | Almeida M, Porter RM. Sirtuins and FoxOs in osteoporosis and osteoarthritis. Bone, 2019, 121: 284-292. |
47. | Li Y, Ma Y, Song L, et al. SIRT3 deficiency exacerbates p53/Parkin-mediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts. Int J Mol Med, 2018, 41(6): 3517-3526. |
48. | Torrens-Mas M, Pons DG, Sastre-Serra J, et al. SIRT3 silencing sensitizes breast cancer cells to cytotoxic treatments through an increment in ROS production. J Cell Biochem, 2017, 118(2): 397-406. |
49. | Puigserver P, Wu Z, Park CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998, 92(6): 829-839. |
50. | Viña J, Gomez-Cabrera MC, Borras C, et al. Mitochondrial biogenesis in exercise and in ageing. Adv Drug Deliv Rev, 2009, 61(14): 1369-1374. |
51. | Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A, 1994, 91(4): 1309-1313. |
52. | Zhang X, Bu Y, Zhu B, et al. Global transcriptome analysis to identify critical genes involved in the pathology of osteoarthritis. Bone Joint Res, 2018, 7(4): 298-307. |
53. | Ekstrand MI, Falkenberg M, Rantanen A, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet, 2004, 13(9): 935-944. |
54. | Larsson NG, Wang J, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet, 1998, 18(3): 231-236. |
55. | Cotney J, McKay SE, Shadel GS. Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum Mol Genet, 2009, 18(14): 2670-2682. |
56. | Metodiev MD, Lesko N, Park CB, et al. Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab, 2009, 9(4): 386-397. |
57. | Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999, 98(1): 115-124. |
58. | Yang ZF, Drumea K, Mott S, et al. GABP transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis. Mol Cell Biol, 2014, 34(17): 3194-3201. |
59. | Suliman HB, Carraway MS, Welty-Wolf KE, et al. Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1. J Biol Chem, 2003, 278(42): 41510-41518. |
60. | Mattingly KA, Ivanova MM, Riggs KA, et al. Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol, 2008, 22(3): 609-622. |
61. | Luo J, Sladek R, Carrier J, et al. Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor alpha. Mol Cell Biol, 2003, 23(22): 7947-7956. |
62. | Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev, 2008, 88(2): 611-638. |
63. | Schreiber SN, Emter R, Hock MB, et al. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A, 2004, 101(17): 6472-6477. |
64. | Mootha VK, Handschin C, Arlow D, et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A, 2004, 101(17): 6570-6575. |
65. | Fan W, He N, Lin CS, et al. ERRγ promotes angiogenesis, mitochondrial biogenesis, and oxidative remodeling in PGC1α/β-deficient muscle. Cell Rep, 2018, 22(10): 2521-2529. |
66. | Li Z, Zhang Y, Tian F, et al. Omentin-1 promotes mitochondrial biogenesis via PGC1α-AMPK pathway in chondrocytes. Arch Physiol Biochem, 2020. doi: 10.1080/13813455.2020.1819337. |
67. | Masuda I, Koike M, Nakashima S, et al. Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes. Sci Rep, 2018, 8(1): 7229. doi: 10.1038/s41598-018-25348-1. |
68. | Wang L, Shan H, Wang B, et al. Puerarin attenuates osteoarthritis via upregulating amp-activated protein kinase/proliferator-activated receptor-γ coactivator-1 signaling pathway in osteoarthritis rats. Pharmacology, 2018, 102(3-4): 117-125. |
69. | Chen D, Guo J, Li L. Catalpol promotes mitochondrial biogenesis in chondrocytes. Arch Physiol Biochem, 2020. doi: 10.1080/13813455.2020.1727927. |
70. | 张虎, 梁计陵, 钱帅伟, 等. 白藜芦醇对线粒体质量调控研究进展. 生物学杂志, 2020, 37(6): 99-103. |
71. | Zhou J, Yang Z, Shen R, et al. Resveratrol improves mitochondrial biogenesis function and activates PGC-1α pathway in a preclinical model of early brain injury following subarachnoid hemorrhage. Front Mol Biosci, 2021, 8: 620683. doi: 10.3389/fmolb.2021.620683. |
72. | Li J, Zhang B, Liu WX, et al. Metformin limits osteoarthritis development and progression through activation of ampk signalling. Ann Rheum Dis, 2020, 79(5): 635-645. |
73. | Petursson F, Husa M, June R, et al. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Res Ther, 2013, 15(4): R77. doi: 10.1186/ar4254. |
74. | Zhang M, Deng YN, Zhang JY, et al. SIRT3 protects rotenone-induced injury in SH-SY5Y cells by promoting autophagy through the LKB1-AMPK-mTOR pathway. Aging Dis, 2018, 9(2): 273-286. |
- 1. Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ, 2003, 81(9): 646-656.
- 2. Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol, 2016, 12(7): 412-420.
- 3. Cram P, Lu X, Kates SL, et al. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991-2010. JAMA, 2012, 308(12): 1227-1236.
- 4. Li PA, Hou X, Hao S. Mitochondrial biogenesis in neurodegeneration. J Neurosci Res, 2017, 95(10): 2025-2029.
- 5. Popov LD. Mitochondrial biogenesis: An update. J Cell Mol Med, 2020, 24(9): 4892-4899.
- 6. Jamwal S, Blackburn JK, Elsworth JD. Pparγ/pgc1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther, 2021, 219: 107705. doi: 10.1016/j.pharmthera.2020.107705.
- 7. Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays in Biochem, 2010, 47: 69-84.
- 8. Mao X, Fu P, Wang L, et al. Mitochondria: Potential targets for osteoarthritis. Front Med (Lausanne), 2020, 7: 581402. doi: 10.3389/fmed.2020.581402.
- 9. Wang Y, Zhao X, Lotz M, et al. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheumatol, 2015, 67(8): 2141-2153.
- 10. Blanco FJ, López-Armada MJ, Maneiro E. Mitochondrial dysfunction in osteoarthritis. Mitochondrion, 2004, 4(5-6): 715-728.
- 11. Onuora S. Osteoarthritis: Chondrocyte clock maintains cartilage tissue. Nat Rev Rheumatol, 2016, 12(2): 71. doi: 10.1038/nrrheum.2015.183.
- 12. Mitrovic D, Quintero M, Stankovic A, et al. Cell density of adult human femoral condylar articular cartilage. Joints with normal and fibrillated surfaces. Lab Invest, 1983, 49(3): 309-316.
- 13. Blanco FJ, Guitian R, Vázquez-Martul E, et al. Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum, 1998, 41(2): 284-289.
- 14. Bullough PG. Osteoarthritis: pathogenesis and aetiology. Br J Rheumatol, 1984, 23(3): 166-169.
- 15. Otte P. Basic cell metabolism of articular cartilage. Manometric studies. Z Rheumatol, 1991, 50(5): 304-312.
- 16. Jahr H, Gunes S, Kuhn AR, et al. Bioreactor-controlled physoxia regulates TGF-β signaling to alter extracellular matrix synthesis by human chondrocytes. Int J Mol Sci, 2019, 20(7): 1715. doi: 10.3390/ijms20071715.
- 17. Wang Y, Chen LY, Liu-Bryan R. Mitochondrial biogenesis, activity, and DNA isolation in chondrocytes. Methods Mol Biol, 2021, 2245: 195-213.
- 18. Maneiro E, López-Armada MJ, de Andres MC, et al. Effect of nitric oxide on mitochondrial respiratory activity of human articular chondrocytes. Ann Rheum Dis, 2005, 64(3): 388-395.
- 19. Du K, Ramachandran A, McGill MR, et al. Induction of mitochondrial biogenesis protects against acetaminophen hepatotoxicity. Food Chem Toxicol, 2017, 108(Pt A): 339-350.
- 20. Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol, 2007, 47: 629-656.
- 21. Coppi L, Ligorio S, Mitro N, et al. Pgc1s and beyond: Disentangling the complex regulation of mitochondrial and cellular metabolism. Int J Mol Sci, 2021, 22(13): 6913. doi: 10.3390/ijms22136913.
- 22. Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, et al. The role of pgc-1α and mitochondrial biogenesis in kidney diseases. Biomolecules, 2020, 10(2): 347. doi: 10.3390/biom10020347.
- 23. Simmons EC, Scholpa NE, Schnellmann RG. Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative cns diseases. Exp Neurol, 2020, 329: 113309. doi: 10.1016/j.expneurol.2020.113309.
- 24. Dorn GW, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev, 2015, 29(19): 1981-1991.
- 25. Zhao X, Petursson F, Viollet B, et al. Peroxisome proliferator-activated receptor γ coactivator 1α and foxo3a mediate chondroprotection by amp-activated protein kinase. Arthritis Rheumatol, 2014, 66(11): 3073-3082.
- 26. Wang J, Wang K, Huang C, et al. SIRT3 activation by dihydromyricetin suppresses chondrocytes degeneration via maintaining mitochondrial homeostasis. Int J Biol Sci, 2018, 14(13): 1873-1882.
- 27. Liu D, Cai ZJ, Yang YT, et al. Mitochondrial quality control in cartilage damage and osteoarthritis: New insights and potential therapeutic targets. Osteoarthritis Cartilage, 2021. doi: 10.1016/j.joca.2021.10.009.
- 28. Soto-Hermida A, Fernández-Moreno M, Pértega-Díaz S, et al. Mitochondrial DNA haplogroups modulate the radiographic progression of spanish patients with osteoarthritis. Rheumatol Int, 2015, 35(2): 337-344.
- 29. Wang J, Li J, Song D, et al. Ampk: Implications in osteoarthritis and therapeutic targets. Am J Transl Res, 2020, 12(12): 7670-7681.
- 30. Hardie DG. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr, 2014, 34: 31-55.
- 31. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol, 2018, 19(2): 121-135.
- 32. Carling D, Zammit VA, Hardie DG. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett, 1987, 223(2): 217-222.
- 33. Toyama EQ, Herzig S, Courchet J, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science, 2016, 351(6270): 275-281.
- 34. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev, 2012, 11(2): 230-241.
- 35. Liu-Bryan R. Inflammation and intracellular metabolism: new targets in OA. Osteoarthritis Cartilage, 2015, 23(11): 1835-1842.
- 36. Chen LY, Wang Y, Terkeltaub R, et al. Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function. Osteoarthritis Cartilage, 2018, 26(11): 1539-1550.
- 37. Terkeltaub R, Yang B, Lotz M, et al. Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α. Arthritis Rheum, 2011, 63(7): 1928-1937.
- 38. Matsuzaki T, Matsushita T, Takayama K, et al. Disruption of sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis, 2014, 73(7): 1397-1404.
- 39. Tang BL. Sirt1 and the Mitochondria. Mol Cells, 2016, 39(2): 87-95.
- 40. Haigis MC, Guarente LP. Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev, 2006, 20(21): 2913-2921.
- 41. Shen P, Lin W, Ba X, et al. Quercetin-mediated SIRT1 activation attenuates collagen-induced mice arthritis. J Ethnopharmacol, 2021, 279: 114213. doi: 10.1016/j.jep.2021.114213.
- 42. Onyango P, Celic I, McCaffery JM, et al. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A, 2002, 99(21): 13653-13658.
- 43. Schwer B, North BJ, Frye RA, et al. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol, 2002, 158(4): 647-657.
- 44. He Y, Wu Z, Xu L, et al. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis. Cell Mol Life Sci, 2020, 77(19): 3729-3743.
- 45. He W, Newman JC, Wang MZ, et al. Mitochondrial sirtuins: regulators of protein acylation and metabolism. Trends Endocrinol Metab, 2012, 23(9): 467-476.
- 46. Almeida M, Porter RM. Sirtuins and FoxOs in osteoporosis and osteoarthritis. Bone, 2019, 121: 284-292.
- 47. Li Y, Ma Y, Song L, et al. SIRT3 deficiency exacerbates p53/Parkin-mediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts. Int J Mol Med, 2018, 41(6): 3517-3526.
- 48. Torrens-Mas M, Pons DG, Sastre-Serra J, et al. SIRT3 silencing sensitizes breast cancer cells to cytotoxic treatments through an increment in ROS production. J Cell Biochem, 2017, 118(2): 397-406.
- 49. Puigserver P, Wu Z, Park CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998, 92(6): 829-839.
- 50. Viña J, Gomez-Cabrera MC, Borras C, et al. Mitochondrial biogenesis in exercise and in ageing. Adv Drug Deliv Rev, 2009, 61(14): 1369-1374.
- 51. Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A, 1994, 91(4): 1309-1313.
- 52. Zhang X, Bu Y, Zhu B, et al. Global transcriptome analysis to identify critical genes involved in the pathology of osteoarthritis. Bone Joint Res, 2018, 7(4): 298-307.
- 53. Ekstrand MI, Falkenberg M, Rantanen A, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet, 2004, 13(9): 935-944.
- 54. Larsson NG, Wang J, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet, 1998, 18(3): 231-236.
- 55. Cotney J, McKay SE, Shadel GS. Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum Mol Genet, 2009, 18(14): 2670-2682.
- 56. Metodiev MD, Lesko N, Park CB, et al. Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab, 2009, 9(4): 386-397.
- 57. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999, 98(1): 115-124.
- 58. Yang ZF, Drumea K, Mott S, et al. GABP transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis. Mol Cell Biol, 2014, 34(17): 3194-3201.
- 59. Suliman HB, Carraway MS, Welty-Wolf KE, et al. Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1. J Biol Chem, 2003, 278(42): 41510-41518.
- 60. Mattingly KA, Ivanova MM, Riggs KA, et al. Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol, 2008, 22(3): 609-622.
- 61. Luo J, Sladek R, Carrier J, et al. Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor alpha. Mol Cell Biol, 2003, 23(22): 7947-7956.
- 62. Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev, 2008, 88(2): 611-638.
- 63. Schreiber SN, Emter R, Hock MB, et al. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A, 2004, 101(17): 6472-6477.
- 64. Mootha VK, Handschin C, Arlow D, et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A, 2004, 101(17): 6570-6575.
- 65. Fan W, He N, Lin CS, et al. ERRγ promotes angiogenesis, mitochondrial biogenesis, and oxidative remodeling in PGC1α/β-deficient muscle. Cell Rep, 2018, 22(10): 2521-2529.
- 66. Li Z, Zhang Y, Tian F, et al. Omentin-1 promotes mitochondrial biogenesis via PGC1α-AMPK pathway in chondrocytes. Arch Physiol Biochem, 2020. doi: 10.1080/13813455.2020.1819337.
- 67. Masuda I, Koike M, Nakashima S, et al. Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes. Sci Rep, 2018, 8(1): 7229. doi: 10.1038/s41598-018-25348-1.
- 68. Wang L, Shan H, Wang B, et al. Puerarin attenuates osteoarthritis via upregulating amp-activated protein kinase/proliferator-activated receptor-γ coactivator-1 signaling pathway in osteoarthritis rats. Pharmacology, 2018, 102(3-4): 117-125.
- 69. Chen D, Guo J, Li L. Catalpol promotes mitochondrial biogenesis in chondrocytes. Arch Physiol Biochem, 2020. doi: 10.1080/13813455.2020.1727927.
- 70. 张虎, 梁计陵, 钱帅伟, 等. 白藜芦醇对线粒体质量调控研究进展. 生物学杂志, 2020, 37(6): 99-103.
- 71. Zhou J, Yang Z, Shen R, et al. Resveratrol improves mitochondrial biogenesis function and activates PGC-1α pathway in a preclinical model of early brain injury following subarachnoid hemorrhage. Front Mol Biosci, 2021, 8: 620683. doi: 10.3389/fmolb.2021.620683.
- 72. Li J, Zhang B, Liu WX, et al. Metformin limits osteoarthritis development and progression through activation of ampk signalling. Ann Rheum Dis, 2020, 79(5): 635-645.
- 73. Petursson F, Husa M, June R, et al. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Res Ther, 2013, 15(4): R77. doi: 10.1186/ar4254.
- 74. Zhang M, Deng YN, Zhang JY, et al. SIRT3 protects rotenone-induced injury in SH-SY5Y cells by promoting autophagy through the LKB1-AMPK-mTOR pathway. Aging Dis, 2018, 9(2): 273-286.