1. |
Kirnaz S, Capadona C, Lintz M, et al. Pathomechanism and biomechanics of degenerative disc disease: Features of healthy and degenerated discs. Int J Spine Surg, 2021, 15(s1): 10-25.
|
2. |
Yang RZ, Xu WN, Zheng HL, et al. Involvement of oxidative stress-induced annulus fibrosus cell and nucleus pulposus cell ferroptosis in intervertebral disc degeneration pathogenesis. J Cell Physiol, 2021, 236(4): 2725-2739.
|
3. |
Wang Y, Shi Y, Huang Y, et al. Resveratrol mediates mechanical allodynia through modulating inflammatory response via the TREM2-autophagy axis in SNI rat model. J Neuroinflammation, 2020, 17(1): 311. doi: 10.1186/s12974-020-01991-2.
|
4. |
Feng Y, Hu S, Liu L, et al. HMGB1 contributes to osteoarthritis of temporomandibular joint by inducing synovial angiogenesis. J Oral Rehabil, 2021, 48(5): 551-559.
|
5. |
Shen P, Lin W, Ba X, et al. Quercetin-mediated SIRT1 activation attenuates collagen-induced mice arthritis. J Ethnopharmacol, 2021, 279: 114213. doi: 10.1016/j.jep.2021.114213.
|
6. |
Fan W, Chen S, Wu X, et al. Resveratrol relieves gouty arthritis by promoting mitophagy to inhibit activation of NLRP3 inflammasomes. J Inflamm Res, 2021, 14: 3523-3536.
|
7. |
Shao Z, Wang B, Shi Y, et al. Senolytic agent Quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis. Osteoarthritis Cartilage, 2021, 29(3): 413-422.
|
8. |
李文超, 林一峰, 梁祖建, 等. 鹿茸多肽对软骨终板细胞基质蛋白及其降解酶基因表达的影响. 中国中医骨伤科杂志, 2019, 27(1): 6-10, 16.
|
9. |
Freidin M, Kraatari M, Skarp S, et al. Genome-wide meta-analysis identifies genetic locus on chromosome 9 associated with Modic changes. J Med Genet, 2019, 56(7): 420-426.
|
10. |
Ding J, Zhang R, Li H, et al. ASIC1 and ASIC3 mediate cellular senescence of human nucleus pulposus mesenchymal stem cells during intervertebral disc degeneration. Aging (Albany NY), 2021, 13(7): 10703-10723.
|
11. |
Zhao Y, Qiu C, Wang W, et al. Cortistatin protects against intervertebral disc degeneration through targeting mitochondrial ROS-dependent NLRP3 inflammasome activation. Theranostics, 2020, 10(15): 7015-7033.
|
12. |
Jiang Y, Luo W, Wang B, et al. Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice. Life Sci, 2020, 246: 117422. doi: 10.3389/fcell.2020.00694.
|
13. |
Kim H, Hong JY, Lee J, et al. IL-1β promotes disc degeneration and inflammation through direct injection of intervertebral disc in a rat lumbar disc herniation model. Spine J, 2021, 21(6): 1031-1041.
|
14. |
Jie J, Xu X, Li W, et al. Regulation of apoptosis and inflammatory response in interleukin-1β-induced nucleus pulposus cells by miR-125b-5p via targeting TRIAP1. Biochem Genet, 2021, 59(2): 475-490.
|
15. |
Grujić-Milanović J, Jaćević V, Miloradović Z, et al. Resveratrol protects cardiac tissue in experimental malignant hypertension due to antioxidant, anti-inflammatory, and anti-apoptotic properties. Int J Mol Sci, 2021, 22(9): 5006. doi: 10.3390/ijms22095006.
|
16. |
Wang B, Ji D, Xing W, et al. miR-142-3p and HMGB1 are negatively regulated in proliferation, apoptosis, migration, and autophagy of cartilage endplate cells. Cartilage, 2021, 13(2_suppl): 592S-603S.
|
17. |
Hassanpour M, Biray Avci Ç, Rahbarghazi R, et al. Resveratrol reduced the detrimental effects of malondialdehyde on human endothelial cells. J Cardiovasc Thorac Res, 2021, 13(2): 131-140.
|
18. |
Gorth DJ, Ottone OK, Shapiro IM, et al. Differential effect of long-term systemic exposure of TNFα on health of the annulus fibrosus and nucleus pulposus of the intervertebral disc. J Bone Miner Res, 2020, 35(4): 725-737.
|
19. |
Ping SH, Tian FM, Liu H, et al. Raloxifene inhibits the overexpression of TGF-β1 in cartilage and regulates the metabolism of subchondral bone in rats with osteoporotic osteoarthritis. Bosn J Basic Med Sci, 2021, 21(3): 284-293.
|
20. |
Tang N, Dong Y, Xiao T, et al. LncRNA TUG1 promotes the intervertebral disc degeneration and nucleus pulposus cell apoptosis though modulating miR-26a/HMGB1 axis and regulating NF-κB activation. Am J Transl Res, 2020, 12(9): 5449-5464.
|
21. |
Su Q, Li Y, Feng X, et al. Association and histological characteristics of endplate injury and intervertebral disc degeneration in a rat model. Injury, 2021, 52(8): 2084-2094.
|
22. |
Liu L, Zhang J, Zhang X, et al. HMGB1: an important regulator of myeloid differentiation and acute myeloid leukemia as well as a promising therapeutic target. J Mol Med (Berl), 2021, 99(1): 107-118.
|
23. |
Liu N, Wu Y, Wen X, et al. Chronic stress promotes acute myeloid leukemia progression through HMGB1/NLRP3/IL-1β signaling pathway. J Mol Med (Berl), 2021, 99(3): 403-414.
|
24. |
Sgrignani J, Cecchinato V, Fassi EMA, et al. Systematic development of peptide inhibitors targeting the CXCL12/HMGB1 interaction. J Med Chem, 2021, 64(18): 13439-13450.
|
25. |
Huang J, Zeng T, Zhang X, et al. Clinical diagnostic significance of 14-3-3η protein, high-mobility group box-1, anti-cyclic citrullinated peptide antibodies, anti-mutated citrullinated vimentin antibodies and rheumatoid factor in rheumatoid arthritis. Br J Biomed Sci, 2020, 77(1): 19-23.
|
26. |
贺亚军, 孙麟, 冯浩宇, 等. 甘草甜素抑制高迁移率族蛋白B1对大鼠脊髓损伤后胶质瘢痕形成的作用及机制研究. 中国修复重建外科杂志, 2020, 34(10): 1298-1304.
|
27. |
Kawakubo A, Uchida K, Miyagi M, et al. Investigation of resident and recruited macrophages following disc injury in mice. J Orthop Res, 2020, 38(8): 1703-1709.
|