1. |
中华医学会骨科学分会关节外科学组, 中国医师协会骨科医师分会骨关节炎学组, 国家老年疾病临床医学研究中心(湘雅医院), 等. 中国骨关节炎诊疗指南(2021年版). 中华骨科杂志, 2021, 41(18): 1291-1314.
|
2. |
薛庆云, 王坤正, 裴福兴, 等. 中国40岁以上人群原发性骨关节炎患病状况调查. 中华骨科杂志, 2015, 35(12): 1206-1212.
|
3. |
Li S, Tian T, Zhang T, et al. Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Materials Today, 2019, 24: 57-68.
|
4. |
Zhang X, Liu N, Zhou M, et al. DNA nanorobot delivers antisense oligonucleotides silencing c-Met gene expression for cancer therapy. J Biomed Nanotechnol, 2019, 15(9): 1948-1959.
|
5. |
Zhang T, Cui W, Tian T, et al. Progress in biomedical applications of tetrahedral framework nucleic acid-based functional systems. ACS Appl Mater Interfaces, 2020, 12(42): 47115-47126.
|
6. |
Goodman RP, Schaap IA, Tardin CF, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 2005, 310(5754): 1661-1665.
|
7. |
Zhang X, Liu N, Zhou M, et al. The application of tetrahedral framework nucleic acids as a drug carrier in biomedicine fields. Curr Stem Cell Res Ther, 2021, 16(1): 48-56.
|
8. |
Ma W, Zhan Y, Zhang Y, et al. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett, 2019, 19(7): 4505-4517.
|
9. |
Zhao D, Liu M, Li J, et al. Angiogenic aptamer-modified tetrahedral framework nucleic acid promotes angiogenesis in vitro and in vivo. ACS Appl Mater Interfaces, 2021, 13(25): 29439-29449.
|
10. |
Shao X, Cui W, Xie X, et al. Treatment of Alzheimer’s disease with framework nucleic acids. Cell Prolif, 2020, 53(4): e12787. doi: 10.1111/cpr.12787.
|
11. |
Shi S, Fu W, Lin S, et al. Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier. Nanomedicine, 2019, 21: 102061. doi: 10.1016/j.nano.2019.102061.
|
12. |
Gao S, Li Y, Xiao D, et al. Tetrahedral framework nucleic acids induce immune tolerance and prevent the onset of type 1 diabetes. Nano Lett, 2021, 21(10): 4437-4446.
|
13. |
Liu X, Yu Z, Wu Y, et al. The immune regulatory effects of tetrahedral framework nucleic acid on human T cells via the mitogen-activated protein kinase pathway. Cell Prolif, 2021, 54(8): e13084. doi: 10.1111/cpr.13084.
|
14. |
Shi SR, Chen Y, Tian TR, et al. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res, 2020, 8: 6. doi: 10.1038/s41413-019-0077-4.
|
15. |
Shao X, Lin S, Peng Q, et al. Tetrahedral DNA nanostructure: A potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small, 2017, 13(12): 1602770. doi: 10.1002/smll.201602770.
|
16. |
Li P, Fu L, Liao Z, et al. Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment. Biomaterials, 2021, 278: 121131. doi: 10.1016/j.biomaterials.2021.121131.
|
17. |
Shi S, Tian T, Li Y, et al. Tetrahedral framework nucleic acid inhibits chondrocyte apoptosis and oxidative stress through activation of autophagy. ACS Appl Mater Interfaces, 2020, 12(51): 56782-56791.
|
18. |
Marmotti A, Bonasia DE, Bruzzone M, et al. Human cartilage fragments in a composite scaffold for single-stage cartilage repair: an in vitro study of the chondrocyte migration and the influence of TGF-β1 and G-CSF. Knee Surg Sports Traumatol Arthrosc, 2013, 21(8): 1819-1833.
|
19. |
Shi S, Lin S, Shao X, et al. Modulation of chondrocyte motility by tetrahedral DNA nanostructures. Cell Prolif, 2017, 50(5): e12368. doi: 10.1111/cpr.12368.
|
20. |
Marini F, Cianferotti L, Brandi ML. Epigenetic mechanisms in bone biology and osteoporosis: Can they drive therapeutic choices? Int J Mol Sci, 2016, 17(8): 1329. doi: 10.3390/ijms17081329.
|
21. |
Madeira C, Santhagunam A, Salgueiro JB, et al. Advanced cell therapies for articular cartilage regeneration. Trends Biotechnol, 2015, 33(1): 35-42.
|
22. |
Liang Y, Xu X, Li X, et al. Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. ACS Appl Mater Interfaces, 2020, 12(33): 36938-36947.
|
23. |
Jin Z, Ren J, Qi S. Exosomal miR-9-5p secreted by bone marrow-derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1. Cell Tissue Res, 2020, 381(1): 99-114.
|
24. |
Wang X, Guo Y, Wang C, et al. MicroRNA-142-3p inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting HMGB1. Inflammation, 2016, 39(5): 1718-1728.
|
25. |
Zhu H, Yan X, Zhang M, et al. miR-21-5p protects IL-1β-induced human chondrocytes from degradation. J Orthop Surg Res, 2019, 14(1): 118. doi: 10.1186/s13018-019-1160-7.
|
26. |
Zhang Y, Lin J, Zhou X, et al. Melatonin prevents osteoarthritis-induced cartilage degradation via targeting microRNA-140. Oxid Med Cell Longev, 2019, 2019: 9705929. doi: 10.1155/2019/9705929.
|
27. |
Trang P, Wiggins JF, Daige CL, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther, 2011, 19(6): 1116-1122.
|
28. |
Simonson B, Das S. MicroRNA therapeutics: the next magic bullet? Mini Rev Med Chem, 2015, 15(6): 467-474.
|
29. |
Miao P, Wang B, Chen X, et al. Tetrahedral DNA nanostructure-based microRNA biosensor coupled with catalytic recycling of the analyte. ACS Appl Mater Interfaces, 2015, 7(11): 6238-6243.
|
30. |
Zhu D, Wei Y, Sun T, et al. Encoding DNA frameworks for amplified multiplexed imaging of intracellular microRNAs. Anal Chem, 2021, 93(4): 2226-2234.
|
31. |
Wu W, Yu X, Wu J, et al. Surface plasmon resonance imaging-based biosensor for multiplex and ultrasensitive detection of NSCLC-associated exosomal miRNAs using DNA programmed heterostructure of Au-on-Ag. Biosens Bioelectron, 2021, 175: 112835. doi: 10.1016/j.bios.2020.112835.
|
32. |
Yu L, Zhu L, Yan M, et al. Electrochemiluminescence biosensor based on entropy-driven amplification and a tetrahedral DNA nanostructure for miRNA-133a Detection. Anal Chem, 2021, 93(34): 11809-11815.
|
33. |
Li S, Sun Y, Tian T, et al. MicroRNA-214-3p modified tetrahedral framework nucleic acids target survivin to induce tumour cell apoptosis. Cell Prolif, 2020, 53(1): e12708. doi: 10.1111/cpr.12708.
|
34. |
Song G, Dong H, Ma D, et al. Tetrahedral framework nucleic acid delivered RNA therapeutics significantly attenuate pancreatic cancer progression via inhibition of CTR1-dependent copper absorption. ACS Appl Mater Interfaces, 2021, 13(39): 46334-46342.
|
35. |
Li D, Yang Z, Luo Y, et al. Delivery of miR335-5p-pendant tetrahedron DNA nanostructures using an injectable heparin lithium hydrogel for challenging bone defects in steroid-associated osteonecrosis. Adv Healthc Mater, 2022, 11(1): e2101412. doi: 10.1002/adhm.202101412.
|
36. |
Esmaeili A, Hosseini S, Baghaban Eslaminejad M. Engineered-extracellular vesicles as an optimistic tool for microRNA delivery for osteoarthritis treatment. Cell Mol Life Sci, 2021, 78(1): 79-91.
|
37. |
Daniel R, Smith JA. Integration site selection by retroviral vectors: molecular mechanism and clinical consequences. Hum Gene Ther, 2008, 19(6): 557-568.
|
38. |
Kasar S, Salerno E, Yuan Y, et al. Systemic in vivo lentiviral delivery of miR-15a/16 reduces malignancy in the NZB de novo mouse model of chronic lymphocytic leukemia. Genes Immun, 2012, 13(2): 109-119.
|
39. |
Santhagunam A, Madeira C, Cabral JM. Genetically engineered stem cell-based strategies for articular cartilage regeneration. Biotechnol Appl Biochem, 2012, 59(2): 121-131.
|
40. |
Ishida T, Ichihara M, Wang X, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release, 2006, 112(1): 15-25.
|
41. |
Sarker SR, Arai S, Murate M, et al. Evaluation of the influence of ionization states and spacers in the thermotropic phase behaviour of amino acid-based cationic lipids and the transfection efficiency of their assemblies. Int J Pharm, 2012, 422(1-2): 364-373.
|
42. |
Zhang Y, Ma W, Zhu Y, et al. Inhibiting methicillin-resistant staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett, 2018, 18(9): 5652-5659.
|
43. |
Xie X, Shao X, Ma W, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale, 2018, 10(12): 5457-5465.
|
44. |
Liu X, Xu Y, Yu T, et al. A DNA nanostructure platform for directed assembly of synthetic vaccines. Nano Lett, 2012, 12(8): 4254-4259.
|
45. |
Chen C, Yang Z, Tang X. Chemical modifications of nucleic acid drugs and their delivery systems for gene-based therapy. Med Res Rev, 2018, 38(3): 829-869.
|