1. |
Lempberg R, Ahlgren O. Prosthetic replacement of tumour-destroyed diaphyseal bone in the lower extremity. Acta Orthop Scand, 1982, 53(4): 541-545.
|
2. |
Zhao Z, Ye Z, Yan T, et al. Intercalary prosthetic replacement is a reliable solution for metastatic humeral shaft fractures: retrospective, observational study of a single center series. World J Surg Oncol, 2021, 19(1): 140. doi: 10.1186/s12957-021-02250-1.
|
3. |
Zhao J, Yu XC, Xu M, et al. Intercalary prosthetic reconstruction for pathologic diaphyseal humeral fractures due to metastatic tumors: outcomes and improvements. J Shoulder Elbow Surg, 2018, 27(11): 2013-2020.
|
4. |
Albergo JI, Gaston LC, Farfalli GL, et al. Failure rates and functional results for intercalary femur reconstructions after tumour resection. Musculoskelet Surg, 2020, 104(1): 59-65.
|
5. |
Damron TA, Leerapun T, Hugate RR, et al. Does the second-generation intercalary humeral spacer improve on the first? Clin Orthop Relat Res, 2008, 466(6): 1309-1317.
|
6. |
Hines CB, Collins-Yoder A. Bone cement implantation syndrome: key concepts for perioperative nurses. AORN J, 2019, 109(2): 202-216.
|
7. |
Donaldson AJ, Thomson HE, Harper NJ, et al. Bone cement implantation syndrome. Br J Anaesth, 2009, 102(1): 12-22.
|
8. |
Rutter PD, Panesar SS, Darzi A, et al. What is the risk of death or severe harm due to bone cement implantation syndrome among patients undergoing hip hemiarthroplasty for fractured neck of femur? A patient safety surveillance study. BMJ Open, 2014, 4(6): e004853. doi: 10.1136/bmjopen-2014-004853.
|
9. |
Lord GA, Hardy JR, Kummer FJ. An uncemented total hip replacement: experimental study and review of 300 madreporique arthroplasties. Clin Orthop Relat Res, 1979, (141): 2-16.
|
10. |
Shi H, Zhou P, Li J, et al. Functional gradient metallic biomaterials: techniques, current scenery, and future prospects in the biomedical field. Front Bioeng Biotechnol, 2021, 8: 616845. doi: 10.3389/fbioe.2020.616845.
|
11. |
Galante J, Rostoker W, Lueck R, et al. Sintered fiber metal composites as a basis for attachment of implants to bone. J Bone Joint Surg (Am), 1971, 53(1): 101-114.
|
12. |
Goebel L, Kohn D, Orth P. Endoprosthetic replacement following intercalary resection. Orthopade, 2019, 48(7): 572-581.
|
13. |
Streitbürger A, Hardes J, Nottrott M, et al. Reconstruction survival of segmental megaendoprostheses: a retrospective analysis of 28 patients treated for intercalary bone defects after musculoskeletal tumor resections. Arch Orthop Trauma Surg, 2022, 142(1): 41-56.
|
14. |
Guder WK, Hardes J, Gosheger G, et al. Ultra-short stem anchorage in the proximal tibial epiphysis after intercalary tumor resections: analysis of reconstruction survival in four patients at a mean follow-up of 56 months. Arch Orthop Trauma Surg, 2017, 137(4): 481-488.
|
15. |
Zhao D, Tang F, Min L, et al. Intercalary reconstruction of the “ultra-critical sized bone defect” by 3D-printed porous prosthesis after resection of tibial malignant tumor. Cancer Manag Res, 2020, 12: 2503-2512.
|
16. |
Guder WK, Hardes J, Nottrott M, et al. Highly cancellous titanium alloy (TiAl6V4) surfaces on three-dimensionally printed, custom-made intercalary tibia prostheses: promising short- to intermediate-term results. J Pers Med, 2021, 11(5): 351. doi: 10.3390/jpm11050351.
|
17. |
Ruggieri P, Mavrogenis AF, Bianchi G, et al. Outcome of the intramedullary diaphyseal segmental defect fixation system for bone tumors. J Surg Oncol, 2011, 104(1): 83-90.
|
18. |
McGough RL, Goodman MA, Randall RL, et al. The Compress® transcutaneous implant for rehabilitation following limb amputation. Unfallchirurg, 2017, 120(4): 300-305.
|
19. |
Lu M, Li Y, Luo Y, et al. Uncemented three-dimensional-printed prosthetic reconstruction for massive bone defects of the proximal tibia. World J Surg Oncol, 2018, 16(1): 47. doi: 10.1186/s12957-018-1333-6.
|
20. |
Liu W, Shao Z, Rai S, et al. Three-dimensional-printed intercalary prosthesis for the reconstruction of large bone defect after joint-preserving tumor resection. J Surg Oncol, 2020, 121(3): 570-577.
|
21. |
Zhao SC, Zhang CQ, Zhang CL. Custom-made intercalary endoprosthetic reconstruction for a parosteal osteosarcoma of the femoral diaphysis: A case report. Oncol Lett, 2015, 10(5): 3279-3285.
|
22. |
Nakamura T, Matsumine A, Uchida A, et al. Clinical outcomes of Kyocera Modular Limb Salvage system after resection of bone sarcoma of the distal part of the femur: the Japanese Musculoskeletal Oncology Group study. Int Orthop, 2014, 38(4): 825-830.
|
23. |
Fujii E, Ohkubo M, Tsuru K, et al. Selective protein adsorption property and characterization of nano-crystalline zinc-containing hydroxyapatite. Acta Biomater, 2006, 2(1): 69-74.
|
24. |
Jeong J, Kim JH, Shim JH, et al. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res, 2019, 23: 4. doi: 10.1186/s40824-018-0149-3.
|
25. |
Le PTM, Shintani SA, Takadama H, et al. Bioactivation treatment with mixed acid and heat on titanium implants fabricated by selective laser melting enhances preosteoblast cell differentiation. Nanomaterials (Basel), 2021, 11(4): 987. doi: 10.3390/nano11040987.
|
26. |
Huang G, Pan ST, Qiu JX. The clinical application of porous tantalum and its new development for bone tissue engineering. Materials (Basel), 2021, 14(10). doi: 10.3390/ma14102647.
|
27. |
Shi LY, Wang A, Zang FZ, et al. Tantalum-coated pedicle screws enhance implant integration. Colloids Surf B Biointerfaces, 2017, 160: 22-32.
|
28. |
Ständert V, Borcherding K, Bormann N, et al. Antibiotic-loaded amphora-shaped pores on a titanium implant surface enhance osteointegration and prevent infections. Bioact Mater, 2021, 6(8): 2331-2345.
|
29. |
Hulbert SF, Young FA, Mathews RS, et al. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res, 1970, 4(3): 433-456.
|
30. |
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474-5491.
|
31. |
Kruyt MC, de Bruijn JD, Wilson CE, et al. Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats. Tissue Eng, 2003, 9(2): 327-336.
|
32. |
Kujala S, Ryhänen J, Danilov A, et al. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials, 2003, 24(25): 4691-4697.
|
33. |
Callaghan JJ. The clinical results and basic science of total hip arthroplasty with porous-coated prostheses. J Bone Joint Surg (Am), 1993, 75(2): 299-310.
|
34. |
Simon JL, Roy TD, Parsons JR, et al. Engineered cellular response to scaffold architecture in a rabbit trephine defect. J Biomed Mater Res, 2003, 66A(2): 275-282.
|
35. |
Ran Q, Yang W, Hu Y, et al. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. J Mech Behav Biomed Mater, 2018, 84: 1-11.
|