1. |
Ambra LF, Franciozi CE, Phan A, et al. Isolated MPTL reconstruction fails to restore lateral patellar stability when compared to MPFL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2021, 29(3): 793-799.
|
2. |
Zumbansen N, Haupert A, Kohn D, et al. Selective bundle tensioning in double-bundle MPFL reconstruction to improve restoration of dynamic patellofemoral contact pressure. Knee Surg Sports Traumatol Arthrosc, 2020, 28(4): 1144-1153.
|
3. |
Kienle A, Graf N, Krais C, et al. The MOVE-C cervical artificial disc-design, materials, mechanical safety. Med Devices (Auckl), 2020, 13: 315-324.
|
4. |
Yamamoto A, Massimini DF, DiStefano J, et al. Glenohumeral contact pressure with simulated anterior labral and osseous defects in cadaveric shoulders before and after soft tissue repair. Am J Sports Med, 2014, 42(8): 1947-1954.
|
5. |
Koh YG, Son J, Kwon OR, et al. Effect of post-cam design for normal knee joint kinematic, ligament, and quadriceps force in patient-specific posterior-stabilized total knee arthroplasty by using finite element analysis. Biomed Res Int, 2018, 2018: 2438980. doi: 10.1155/2018/2438980.
|
6. |
魏文兴, 聂涌, 吴元刚, 等. 人工全膝关节置换术后假性低位髌骨对髌股关节影响的生物力学研究. 中国修复重建外科杂志, 2021, 35(7): 841-846.
|
7. |
Dagneaux L, Allal R, Pithioux M, et al. Femoral malrotation from diaphyseal fractures results in changes in patellofemoral alignment and higher patellofemoral stress from a finite element model study. Knee, 2018, 25(5): 807-813.
|
8. |
Trad Z, Barkaoui A, Chafra M, et al. Finite element analysis of the effect of high tibial osteotomy correction angle on articular cartilage loading. Proc Inst Mech Eng H, 2018, 232(6): 553-564.
|
9. |
贾笛, 李彦林, 何川, 等. 点对点图像配准技术虚拟膝关节单髁置换术后三维模型的构建. 中国运动医学杂志, 2017, 36(9): 760-764, 772.
|
10. |
Lorbach O, Zumbansen N, Kieb M, et al. Medial patellofemoral ligament reconstruction: Impact of knee flexion angle during graft fixation on dynamic patellofemoral contact pressure-A biomechanical study. Arthroscopy, 2018, 34(4): 1072-1082.
|
11. |
纪刚. 胫骨结节转移术对髌股关节接触压力影响的生物力学研究. 石家庄: 河北医科大学, 2013.
|
12. |
潘永谦, 李健, 高梁斌, 等. 改良Elmslie-Trillat术治疗髌骨不稳定的生物力学与临床研究. 中国临床解剖学杂志, 2009, 27(5): 595-598.
|
13. |
Xu H, Zhang C, Pei G, et al. Arthroscopic medial retinacular imbrication for the treatment of recurrent patellar instability: a simple and all-inside technique. Orthopedics, 2011, 34(7): 524-529.
|
14. |
Marsh JS, Daigneault JP, Sethi P, et al. Treatment of recurrent patellar instability with a modification of the Roux-Goldthwait technique. J Pediatr Orthop. 2006, 26(4): 461-465.
|
15. |
Stephen JM, Kader D, Lumpaopong P, et al. Sectioning the medial patellofemoral ligament alters patellofemoral joint kinematics and contact mechanics. J Orthop Res, 2013, 31(9): 1423-1429.
|
16. |
Zaffagnini S, Colle F, Lopomo N, et al. The influence of medial patellofemoral ligament on patellofemoral joint kinematics and patellar stability. Knee Surg Sports Traumatol Arthrosc, 2013, 21(9): 2164-2171.
|
17. |
Richter DJ, Lyon R, Van Valin S, et al. Current strategies and future directions to optimize ACL reconstruction in adolescent patients. Front Surg, 2018, 5: 36. doi: 10.3389/fsurg.2018.00036.
|
18. |
Ren D, Liu Y, Zhang X, et al. The evaluation of the role of medial collateral ligament maintaining knee stability by a finite element analysis. J Orthop Surg Res, 2017, 12(1): 64. doi: 10.1186/s13018-017-0566-3.
|
19. |
Peters AE, Akhtar R, Comerford EJ, et al. Tissue material properties and computational modelling of the human tibiofemoral joint: a critical review. PeerJ, 2018, 6: e4298. doi: 10.7717/peerj.4298.
|
20. |
Zevenbergen L, Smith CR, Van Rossom S, et al. Cartilage defect location and stiffness predispose the tibiofemoral joint to aberrant loading conditions during stance phase of gait. PLoS One, 2018, 13(10): e0205842. doi: 10.1371/journal.pone.0205842.
|
21. |
Men YT, Li XM, Chen L, et al. Experimental study on the mechanical properties of porcine cartilage with microdefect under rolling load. J Healthc Eng, 2017, 2017: 2306160. doi: 10.1155/2017/2306160.
|
22. |
Li J. Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait. J Mech Behav Biomed Mater, 2021, 113: 104136. doi: 10.1016/j.jmbbm.2020.104136.
|
23. |
O’Rourke D, Beck BR, Harding AT, et al. Assessment of femoral neck strength and bone mineral density changes following exercise using 3D-DXA images. J Biomech, 2021, 119: 110315. doi: 10.1016/j.jbiomech.2021.110315.
|
24. |
Elias JJ, Wilson DR, Adamson R, et al. Evaluation of a computational model used to predict the patellofemoral contact pressure distribution. J Biomech, 2004, 37(3): 295-302.
|