1. |
Tran AP, Warren PM, Silver J. The biology of regeneration failure and success after spinal cord injury. Physiol Rev, 2018, 98(2): 881-917.
|
2. |
Rabchevsky AG, Michael FM, Patel SP. Mitochondria focused neurotherapeutics for spinal cord injury. Exp Neurol, 2020, 330: 113332. doi: 10.1016/j.expneurol.2020.113332.
|
3. |
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res, 2020, 160: 105069. doi: 10.1016/j.phrs.2020.105069.
|
4. |
Abate M, Festa A, Falco M, et al. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol, 2020, 98: 139-153.
|
5. |
Simmons EC, Scholpa NE, Schnellmann RG. FDA-approved 5-HT 1F receptor agonist lasmiditan induces mitochondrial biogenesis and enhances locomotor and blood-spinal cord barrier recovery after spinal cord injury. Exp Neurol, 2021, 341: 113720. doi: 10.1016/j.expneurol.2021.113720.
|
6. |
Wang C, Wang Q, Lou Y, et al. Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. J Cell Mol Med, 2018, 22(2): 1148-1166.
|
7. |
Scholpa NE, Williams H, Wang W, et al. Pharmacological stimulation of mitochondrial biogenesis using the food and drug administration-approved β2-adrenoreceptor agonist formoterol for the Treatment of Spinal Cord Injury. J Neurotrauma, 2019, 36(6): 962-972.
|
8. |
Weixler V, Lapusca R, Grangl G, et al. Autogenous mitochondria transplantation for treatment of right heart failure. J Thorac Cardiovasc Surg, 2021, 162(1): e111-e121.
|
9. |
Kubat GB, Ozler M, Ulger O, et al. The effects of mesenchymal stem cell mitochondrial transplantation on doxorubicin-mediated nephrotoxicity in rats. J Biochem Mol Toxicol, 2021, 35(1): e22612. doi: 10.1002/jbt.22612.
|
10. |
Van den Bossche J, O’Neill LA, Menon D. Macrophage immunometabolism: Where are we (going)? Trends Immunol, 2017, 38(6): 395-406.
|
11. |
Dechandt CRP, Couto-Lima CA, Alberici LC. Triglyceride depletion of brown adipose tissue enables analysis of mitochondrial respiratory function in permeabilized biopsies. Anal Biochem, 2016, 515: 55-60.
|
12. |
Chen CL, Lin CY, Kung HJ. Targeting mitochondrial OXPHOS and their regulatory signals in prostate cancers. Int J Mol Sci, 2021, 22(24): 13435. doi: 10.3390/ijms222413435.
|
13. |
García-Bartolomé A, Peñas A, Illescas M, et al. Altered expression ratio of actin-binding gelsolin isoforms is a novel hallmark of mitochondrial OXPHOS dysfunction. Cells, 2020, 9(9): 1922. doi: 10.3390/cells9091922.
|
14. |
Zhang BL, Gao YL, Li QF, et al. Effects of brain-derived mitochondria on the function of neuron and vascular endothelial cell after traumatic brain injury. World Neurosurg, 2020, 138: e1-e9.
|
15. |
Gu CJ, Li LW, Huang YF, et al. Salidroside ameliorates mitochondria-dependent neuronal apoptosis after spinal cord ischemia-reperfusion injury partially through onhibiting oxidative stress and promoting mitophagy. Oxid Med Cell Longev, 2020, 2020: 3549704.
|
16. |
Han Q, Xie Y, Ordaz JD, et al. Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab, 2020, 31(3): 623-641.
|
17. |
Ge XH, Tang PY, Rong YL, et al. Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and impairs mitochondrial function via activating NF-κB signaling pathway in vascular endothelial cells after traumatic spinal cord injury. Redox Biol, 2021, 41: 101932. doi: 10.1016/j.redox.2021.101932.
|
18. |
Kim YM, Kim SJ, Tatsunami R, et al. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am J Physiol Cell Physiol, 2017, 312(6): C749-C764.
|