1. |
Bates NA, Nesbitt RJ, Shearn JT, et al. The influence of internal and external tibial rotation offsets on knee joint and ligament biomechanics during simulated athletic tasks. Clin Biomech (Bristol, Avon), 2018, 52: 109-116.
|
2. |
Merican AM, Ghosh KM, Iranpour F, et al. The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2011, 19(9): 1479-1487.
|
3. |
Nagamine R, Whiteside LA, White SE, et al. Patellar tracking after total knee arthroplasty. The effect of tibial tray malrotation and articular surface configuration. Clin Orthop Relat Res, 1994, (304): 262-271.
|
4. |
Nicoll D, Rowley DI. Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Joint Surg (Br), 2010, 92(9): 1238-1244.
|
5. |
Planckaert C, Larose G, Ranger P, et al. Total knee arthroplasty with unexplained pain: new insights from kinematics. Arch Orthop Trauma Surg, 2018, 138(4): 553-561.
|
6. |
Bell SW, Young P, Drury C, et al. Component rotational alignment in unexplained painful primary total knee arthroplasty. Knee, 2014, 21(1): 272-277.
|
7. |
Bédard M, Vince KG, Redfern J, et al. Internal rotation of the tibial component is frequent in stiff total knee arthroplasty. Clin Orthop Relat Res, 2011, 469(8): 2346-2355.
|
8. |
Rodríguez-Merchán EC. The stiff total knee arthroplasty: causes, treatment modalities and results. EFORT Open Rev, 2019, 4(10): 602-610.
|
9. |
Huang CH, Lu YC, Hsu LI, et al. Effect of material selection on tibial post stresses in posterior-stabilized knee prosthesis. Bone Joint Res, 2020, 9(11): 768-777.
|
10. |
Asano T, Akagi M, Nakamura T. The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image-matching technique. J Arthroplasty, 2005, 20(8): 1060-1067.
|
11. |
Ma Y, Mizu-Uchi H, Ushio T, et al. Bony landmarks with tibial cutting surface are useful to avoid rotational mismatch in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2019, 27(5): 1570-1579.
|
12. |
路玉峰, 任小宇, 郝阳泉, 等. 胫骨前嵴作为全膝关节置换术胫骨假体旋转对位解剖参考的可靠性研究. 中国骨伤, 2021, 34(5): 417-424.
|
13. |
Akagi M, Mori S, Nishimura S, et al. Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res, 2005, (436): 172-176.
|
14. |
Akagi M, Oh M, Nonaka T, et al. An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res, 2004, (420): 213-219.
|
15. |
De Valk EJ, Noorduyn JC, Mutsaerts EL. How to assess femoral and tibial component rotation after total knee arthroplasty with computed tomography: a systematic review. Knee Surg Sports Traumatol Arthrosc, 2016, 24(11): 3517-3528.
|
16. |
Ohmori T, Kabata T, Kajino Y, et al. Importance of three-dimensional evaluation of surgical transepicondylar axis in total knee arthroplasty. J Knee Surg, 2022, 35(1): 32-38.
|
17. |
Hamai S, Moro-Oka TA, Dunbar NJ, et al. In vivo healthy knee kinematics during dynamic full flexion. Biomed Res Int, 2013, 2013: 717546. doi: 10.1155/2013/717546.
|
18. |
Murakami K, Hamai S, Okazaki K, et al. In vivo kinematics of healthy male knees during squat and golf swing using image-matching techniques. Knee, 2016, 23(2): 221-226.
|
19. |
Lu Y, Ren X, Liu B, et al. Tibiofemoral rotation alignment in the normal knee joints among Chinese adults: a CT analysis. BMC Musculoskelet Disord, 2020, 21(1): 323. doi: 10.1186/s12891-020-03300-7.
|
20. |
Dalury DF. Observations of the proximal tibia in total knee arthroplasty. Clin Orthop Relat Res, 2001, (389): 150-155.
|
21. |
Lutzner J, Krummenauer F, Gunther KP, et al. Rotational alignment of the tibial component in total knee arthroplasty is better at the medial third of tibial tuberosity than at the medial border. BMC Musculoskelet Disord, 2010, 11: 57. doi: 10.1186/1471-2474-11-57.
|
22. |
Nam JH, Koh YG, Kim PS, et al. Evaluation of tibial rotational axis in total knee arthroplasty using magnetic resonance imaging. Sci Rep, 2020, 10(1): 14068. doi: 10.1038/s41598-020-70851-z.
|
23. |
Graw BP, Harris AH, Tripuraneni KR, et al. Rotational references for total knee arthroplasty tibial components change with level of resection. Clin Orthop Relat Res, 2010, 468(10): 2734-2738.
|
24. |
Ma Y, Mizu-Uchi H, Okazaki K, et al. Effects of tibial baseplate shape on rotational alignment in total knee arthroplasty: three-dimensional surgical simulation using osteoarthritis knees. Arch Orthop Trauma Surg, 2018, 138(1): 105-114.
|
25. |
Saffarini M, Nover L, Tandogan R, et al. The original Akagi line is the most reliable: a systematic review of landmarks for rotational alignment of the tibial component in TKA. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1018-1027.
|
26. |
史博, 孙振辉, 杨涛, 等. 内翻型膝关节骨性关节炎患者胫股关节扭转和胫骨假体旋转定位研究. 中国矫形外科杂志, 2013, 21(23): 2339-2344.
|
27. |
余华晨, 温宏, 张宇, 等. Akagi线作为全膝关节置换胫骨近端假体旋转对线的可靠性研究. 中国骨伤, 2015, 28(10): 884-887.
|
28. |
Kawahara S, Okazaki K, Matsuda S, et al. Medial sixth of the patellar tendon at the tibial attachment is useful for the anterior reference in rotational alignment of the tibial component. Knee Surg Sports Traumatol Arthrosc, 2014, 22(5): 1070-1075.
|