1. |
Compston JE, Mcclung MR, Leslie WD. Osteoporosis. Lancet, 2019, 393(10169): 364-376.
|
2. |
Shoback D, Rosen CJ, Black DM, et al. Pharmacological management of osteoporosis in postmenopausal women: An endocrine society guideline update. J Clin Endocrinol Metab, 2020, 105(3): dgaa048. doi: 10.1210/clinem/dgaa048.
|
3. |
Gupta G, Aronow WS. Treatment of postmenopausal osteoporosis. Compr Ther, Fall 2007, 33(3): 114-119.
|
4. |
Jilka RL, O’Brien CA, Roberson PK, et al. Dysapoptosis of osteoblasts and osteocytes increases cancellous bone formation but exaggerates cortical porosity with age. J Bone Miner Res, 2014, 29(1): 103-117.
|
5. |
Lee WC, Guntur AR, Long F, et al. Energy metabolism of the osteoblast: Implications for osteoporosis. Endocr Rev, 2017, 38(3): 255-266.
|
6. |
Zhang F, Xie J, Wang G, et al. Anti-osteoporosis activity of Sanguinarine in preosteoblast MC3T3-E1 cells and an ovariectomized rat model. J Cell Physiol, 2018, 233(6): 4626-4633.
|
7. |
Liu L, Wang D, Qin Y, et al. Astragalin promotes osteoblastic differentiation in MC3T3-E1 cells and bone formation in vivo. Front Endocrinol (Lausanne), 2019, 10: 228. doi: 10.3389/fendo.2019.00228.
|
8. |
Yamabe N, Kang KS, Goto E, et al. Beneficial effect of Corni Fructus, a constituent of Hachimi-jio-gan, on advanced glycation end-product-mediated renal injury in Streptozotocin-treated diabetic rats. Biol Pharm Bull, 2007, 30(3): 520-526.
|
9. |
Lee NH, Seo CS, Lee HY, et al. Hepatoprotective and antioxidative activities of cornus officinalis against acetaminophen-induced hepatotoxicity in mice. Evid Based Complement Alternat Med, 2012, 2012: 804924. doi: 10.1155/2012/804924.
|
10. |
Xu HQ, Hao HP. Effects of iridoid total glycoside from Cornus officinalis on prevention of glomerular overexpression of transforming growth factor beta 1 and matrixes in an experimental diabetes model. Biol Pharm Bull, 2004, 27(7): 1014-1018.
|
11. |
Pi WX, Feng XP, Ye LH, et al. Combination of morroniside and diosgenin prevents high glucose-induced cardiomyocytes apoptosis. Molecules, 2017, 22(1): 163. doi: 10.3390/molecules22010163.
|
12. |
Sun H, Li L, Zhang A, et al. Protective effects of sweroside on human MG-63 cells and rat osteoblasts. Fitoterapia, 2013, 84: 174-179.
|
13. |
Xia C, Zou Z, Fang L, et al. Bushenhuoxue formula promotes osteogenic differentiation of growth plate chondrocytes through β-catenin-dependent manner during osteoporosis. Biomed Pharmacother, 2020, 127: 110170. doi: 10.1016/j.biopha.2020.110170.
|
14. |
Zhang P, Xu H, Wang P, et al. Yougui pills exert osteoprotective effects on rabbit steroid-related osteonecrosis of the femoral head by activating β-catenin. Biomed Pharmacother, 2019, 120: 109520. doi: 10.1016/j.biopha.2019.109520.
|
15. |
Ye J, Zhang X, Dai W, et al. Chemical fingerprinting of Liuwei Dihuang Pill and simultaneous determination of its major bioactive constituents by HPLC coupled with multiple detections of DAD, ELSD and ESI-MS. J Pharm Biomed Anal, 2009, 49(3): 638-645.
|
16. |
Wang Y, Zhao H, Li X, et al. Formononetin alleviates hepatic steatosis by facilitating TFEB-mediated lysosome biogenesis and lipophagy. J Nutr Biochem, 2019, 73: 108214. doi: 10.1016/j.jnutbio.2019.07.005.
|
17. |
Liu T, Xiang B, Guo D, et al. Morroniside promotes angiogenesis and further improves microvascular circulation after focal cerebral ischemia/reperfusion. Brain Res Bull, 2016, 127: 111-118.
|
18. |
Liu T, Sun F, Cui J, et al. Morroniside enhances angiogenesis and improves cardiac function following acute myocardial infarction in rats. Eur J Pharmacol, 2020, 872: 172954. doi: 10.1016/j.ejphar.2020.172954.
|
19. |
Zeng G, Ding W, Li Y, et al. Morroniside protects against cerebral ischemia/reperfusion injury by inhibiting neuron apoptosis and MMP2/9 expression. Exp Ther Med, 2018, 16(3): 2229-2234.
|
20. |
Lee CG, Kim J, Yun SH, et al. Anti-osteoporotic effect of morroniside on osteoblast and osteoclast differentiation in vitro and ovariectomized mice in vivo. Int J Mol Sci, 2021, 22(19): 10642. doi: 10.3390/ijms221910642.
|
21. |
Liu H, Li X, Lin J, et al. Morroniside promotes the osteogenesis by activating PI3K/Akt/mTOR signaling. Biosci Biotechnol Biochem, 2021, 85(2): 332-339.
|
22. |
Xiao Z, Wang J, Chen S, et al. Autophagy promotion enhances the protective effect of Morroniside on human OA chondrocyte. Biosci Biotechnol Biochem, 2020, 84(5): 989-996.
|
23. |
Sun Y, Zhu Y, Liu X, et al. Morroniside attenuates high glucose-induced BMSC dysfunction by regulating the Glo1/AGE/RAGE axis. Cell Prolif, 2020, 53(8): e12866. doi: 10.1111/cpr.12866.
|
24. |
Duan FX, Shi YJ, Chen J, et al. The neuroprotective role of morroniside against spinal cord injury in female rats. Neurochem Int, 2021, 148: 105105. doi: 10.1016/j.neuint.2021.105105.
|
25. |
Gfeller D, Grosdidier A, Wirth M, et al. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res, 2014, 42(Web Server issue): W32-W38.
|
26. |
Yu H, Yao S, Zhou C, et al. Morroniside attenuates apoptosis and pyroptosis of chondrocytes and ameliorates osteoarthritic development by inhibiting NF-κB signaling. J Ethnopharmacol, 2021, 266: 113447. doi: 10.1016/j.jep.2020.113447.
|
27. |
杜昕楠, 刘维. 补肾活血中药治疗原发性骨质疏松症临床研究进展. 河北中医, 2016, 38(5): 796-800.
|
28. |
Yu B, Wang W. Cardioprotective effects of morroniside in rats following acute myocardial infarction. Inflammation, 2018, 41(2): 432-436.
|
29. |
Tang X, Wu H, Mao X, et al. The GLP-1 receptor herbal agonist morroniside attenuates neuropathic pain via spinal microglial expression of IL-10 and β-endorphin. Biochem Biophys Res Commun, 2020, 530(3): 494-499.
|
30. |
Borhani S, Corciulo C, Larranaga-Vera A, et al. Adenosine A 2A receptor (A2AR) activation triggers Akt signaling and enhances nuclear localization of β-catenin in osteoblasts. FASEB J, 2019, 33(6): 7555-7562.
|
31. |
He W, Mazumder A, Wilder T, et al. Adenosine regulates bone metabolism via A1, A2A, and A2B receptors in bone marrow cells from normal humans and patients with multiple myeloma. FASEB J, 2013, 27(9): 3446-3454.
|
32. |
Mediero A, Frenkel SR, Wilder T, et al. Adenosine A2A receptor activation prevents wear particle-induced osteolysis. Sci Transl Med, 2012, 4(135): 135ra65. doi: 10.1126/scitranslmed.3003393.
|
33. |
Mediero A, Kara FM, Wilder T, et al. Adenosine A(2A) receptor ligation inhibits osteoclast formation. Am J Pathol, 2012, 180(2): 775-786.
|
34. |
Yasuda H, Shima N, Nakagawa N, et al. A novel molecular mechanism modulating osteoclast differentiation and function. Bone, 1999, 25(1): 109-113.
|
35. |
Mediero A, Perez-Aso M, Cronstein BN. Activation of adenosine A(2A) receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFκB nuclear translocation. Br J Pharmacol, 2013, 169(6): 1372-1388.
|
36. |
Mediero A, Wilder T, Perez-Aso M, et al. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. FASEB J, 2015, 29(4): 1577-1590.
|
37. |
Mediero A, Wilder T, Shah L, et al. Adenosine A 2A receptor (A2AR) stimulation modulates expression of semaphorins 4D and 3A, regulators of bone homeostasis. FASEB J, 2018, 32(7): 3487-3501.
|
38. |
Mediero A, Cronstein BN. Adenosine and bone metabolism. Trends Endocrinol Metab, 2013, 24(6): 290-300.
|
39. |
Costa MA, Barbosa A, Neto E, et al. On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells. J Cell Physiol, 2011, 226(5): 1353-1366.
|
40. |
Gharibi B, Abraham AA, Ham J, et al. Adenosine receptor subtype expression and activation influence the differentiation of mesenchymal stem cells to osteoblasts and adipocytes. J Bone Miner Res, 2011, 26(9): 2112-2124.
|
41. |
Katebi M, Soleimani M, Cronstein BN. Adenosine A2A receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development. J Leukoc Biol, 2009, 85(3): 438-444.
|