1. |
Arif S, Brady Z, Enchev Y, et al. Minimising radiation exposure to the surgeon in minimally invasive spine surgeries: A systematic review of 15 studies. Orthop Traumatol Surg Res, 2021, 107(7): 102795. doi: 10.1016/j.otsr.2020.102795.
|
2. |
Carl B, Bopp M, Saß B, et al. Reliable navigation registration in cranial and spine surgery based on intraoperative computed tomography. Neurosurg Focus, 2019, 47(6): E11. doi: 10.3171/2019.8.FOCUS19621.
|
3. |
Klingler JH, Scholz C, Hohenhaus M, et al. Radiation exposure to scrub nurse, assistant surgeon, and anesthetist in minimally invasive spinal fusion surgery comparing 2D conventional fluoroscopy with 3D fluoroscopy-based navigation: A randomized controlled trial. Clin Spine Surg, 2021, 34(4): E211-E215.
|
4. |
Konieczny MR, Krauspe R. Navigation versus fluoroscopy in multilevel MIS pedicle screw insertion: Separate analysis of exposure to radiation of the surgeon and of the patients. Clin Spine Surg, 2019, 32(5): E258-E265.
|
5. |
Vaishnav AS, Merrill RK, Sandhu H, et al. A review of techniques, time demand, radiation exposure, and outcomes of skin-anchored intraoperative 3D navigation in minimally invasive lumbar spinal surgery. Spine (Phila Pa 1976), 2020, 45(8): E465-E476.
|
6. |
Khanna R, McDevitt JL, Abecassis ZA, et al. An outcome and cost analysis comparing single-level minimally invasive transforaminal lumbar interbody fusion using intraoperative fluoroscopy versus computed tomography-guided navigation. World Neurosurg, 2016, 94: 255-260.
|
7. |
Lian X, Navarro-Ramirez R, Berlin C, et al. Total 3D Airo® navigation for minimally invasive transforaminal lumbar interbody fusion. Biomed Res Int, 2016, 2016: 5027340. doi: 10.1155/2016/5027340.
|
8. |
Wu MH, Dubey NK, Li YY, et al. Comparison of minimally invasive spine surgery using intraoperative computed tomography integrated navigation, fluoroscopy, and conventional open surgery for lumbar spondylolisthesis: a prospective registry-based cohort study. Spine J, 2017, 17(8): 1082-1090.
|
9. |
Zhang Y, Xu C, Zhou Y, et al. Minimally invasive computer navigation-assisted endoscopic transforaminal interbody fusion with bilateral decompression via a unilateral approach: Initial clinical experience at one-year follow-up. World Neurosurg, 2017, 106: 291-299.
|
10. |
Shin Y, Sunada H, Shiraishi Y, et al. Navigation-assisted full-endoscopic spine surgery: a technical note. J Spine Surg, 2020, 6(2): 513-520.
|
11. |
Hahn BS, Park JY. Incorporating new technologies to overcome the limitations of endoscopic spine surgery: Navigation, robotics, and visualization. World Neurosurg, 2021, 145: 712-721.
|
12. |
Chen KT, Song MS, Kim JS. How I do it? Interlaminar contralateral endoscopic lumbar foraminotomy assisted with the O-arm navigation Acta Neurochir (Wien), 2020, 162(1): 121-125.
|
13. |
Ao S, Wu J, Tang Y, et al. Percutaneous endoscopic lumbar discectomy assisted by O-arm-based navigation improves the learning curve. Biomed Res Int, 2019, 2019: 6509409. doi: 10.1155/2019/6509409.
|
14. |
Heo DH, Lee DC, Kim HS, et al. Clinical results and complications of endoscopic lumbar interbody fusion for lumbar degenerative disease: A meta-analysis. World Neurosurg, 2021, 145: 396-404.
|
15. |
Kou Y, Chang J, Guan X, et al. Endoscopic lumbar interbody fusion and minimally invasive transforaminal lumbar interbody fusion for the treatment of lumbar degenerative diseases: A systematic review and meta-analysis. World Neurosurg, 2021, 152: e352-e368.
|
16. |
Stone CE, Myers BL, Gupta S, et al. Surgical outcomes after single-level endoscopic transforaminal lumbar interbody fusion: A systematic review and meta-analysis. Cureus, 2020, 12(10): e11052. doi: 10.7759/cureus.11052.
|
17. |
Rao G, Brodke DS, Rondina M, et al. Comparison of computerized tomography and direct visualization in thoracic pedicle screw placement. J Neurosurg, 2002, 97(2 Suppl): 223-226.
|
18. |
Frane N, Megas A, Stapleton E, et al. Radiation exposure in orthopaedics. JBJS Rev, 2020, 8(1): e0060. doi: 10.2106/JBJS.RVW.19.00060.
|
19. |
Osman SG. Endoscopic transforaminal decompression, interbody fusion, and percutaneous pedicle screw implantation of the lumbar spine: A case series report. Int J Spine Surg, 2012, 6: 157-166.
|
20. |
Jacquot F, Gastambide D. Percutaneous endoscopic transforaminal lumbar interbody fusion: is it worth it? Int Orthop, 2013, 37(8): 1507-1510.
|
21. |
Ao S, Zheng W, Wu J, et al. Comparison of preliminary clinical outcomes between percutaneous endoscopic and minimally invasive transforaminal lumbar interbody fusion for lumbar degenerative diseases in a tertiary hospital: Is percutaneous endoscopic procedure superior to MIS-TLIF? A prospective cohort study. Int J Surg, 2020, 76: 136-143.
|
22. |
Zhao XB, Ma HJ, Geng B, et al. Early clinical evaluation of percutaneous full-endoscopic transforaminal lumbar interbody fusion with pedicle screw insertion for treating degenerative lumbar spinal stenosis. Orthop Surg, 2021, 13(1): 328-337.
|
23. |
Jin M, Zhang J, Shao H, et al. Percutaneous transforaminal endoscopic lumbar interbody fusion for degenerative lumbar diseases: A consecutive case series with mean 2-year follow-up. Pain Physician, 2020, 23(2): 165-174.
|
24. |
Brusko GD, Wang MY. Endoscopic lumbar interbody fusion. Neurosurg Clin N Am, 2020, 31(1): 17-24.
|
25. |
Liounakos JI, Wang MY. Lumbar 3-lumbar 5 robotic-assisted endoscopic transforaminal lumbar interbody fusion: 2-dimensional operative video. Oper Neurosurg (Hagerstown), 2020, 19(1): E73-E74.
|