1. |
Abdelrahman H, El-Menyar A, Keil H, et al. Patterns, management, and outcomes of traumatic pelvic fracture: insights from a multicenter study. J Orthop Surg Res, 2020, 15(1): 249. doi: 10.1186/s13018-020-01772-w.
|
2. |
Garcia M, Firek M, Zakhary B, et al. Severe pelvic fracture in the elderly: High morbidity, mortality, and resource utilization. Am Surg, 2020, 86(10): 1401-1406.
|
3. |
Takao M, Hamada H, Sakai T, et al. Clinical application of navigation in the surgical treatment of a pelvic ring injury and acetabular fracture. Adv Exp Med Biol, 2018, 1093: 289-305.
|
4. |
Stübig T, Windhagen H, Krettek C, et al. Computer-assisted orthopedic and trauma surgery. Dtsch Arztebl Int, 2020, 117(47): 793-800.
|
5. |
Thakkar SC, Thakkar RS, Sirisreetreerux N, et al. 2D versus 3D fluoroscopy-based navigation in posterior pelvic fixation: review of the literature on current technology. Int J Comput Assist Radiol Surg, 2017, 12(1): 69-76.
|
6. |
Passias BJ, Grenier G, Buchan J, et al. Use of 3D navigation versus traditional fluoroscopy for posterior pelvic ring fixation. Orthopedics, 2021, 44(4): 229-234.
|
7. |
Pisquiy JJ, Toraih EA, Hussein MH, et al. Utility of 3-dimensional intraoperative imaging in pelvic and acetabular fractures: A network meta-analysis. JBJS Rev, 2021, 9(6). doi: 10.2106/JBJS.RVW.20.00129.
|
8. |
Privalov M, Beisemann N, Swartman B, et al. First experiences with intraoperative CT in navigated sacroiliac (SI) instrumentation: An analysis of 25 cases and comparison with conventional intraoperative 2D and 3D imaging. Injury, 2021, 52(10): 2730-2737.
|
9. |
Berger-Groch J, Lueers M, Rueger JM, et al. Accuracy of navigated and conventional iliosacral screw placement in B- and C-type pelvic ring fractures. Eur J Trauma Emerg Surg, 2020, 46(1): 107-113.
|
10. |
Ariffin MHM, Ibrahim K, Baharudin A, et al. Early experience, setup, learning curve, benefits, and complications associated with exoscope and three-dimensional 4K hybrid digital visualizations in minimally invasive spine surgery. Asian Spine J, 2020, 14(1): 59-65.
|
11. |
林书, 胡豇, 万仑, 等. “天玑” 骨科机器人辅助下经皮椎弓根螺钉植钉安全性评价. 中国修复重建外科杂志, 2021, 35(7): 813-817.
|
12. |
袁伟, 孟小童, 刘欣春, 等. 机器人辅助经皮椎体后凸成形术治疗单/双节段骨质疏松性椎体压缩骨折临床疗效. 中国修复重建外科杂志, 2021, 35(8): 1000-1006.
|
13. |
袁春明, 肖亭英, 吕静, 等. 骨科机器人辅助下与徒手胸腰椎骨折手术疗效的对比. 四川医学, 2021, 42(11): 1109-1113.
|
14. |
Xu P, Wang H, Liu ZY, et al. An evaluation of three-dimensional image-guided technologies in percutaneous pelvic and acetabular lag screw placement. J Surg Res, 2013, 185(1): 338-346.
|
15. |
Keil H, Aytac S, Grützner PA, et al. Intraoperative imaging in pelvic surgery. Z Orthop Unfall, 2019, 157(4): 367-377.
|
16. |
Yu T, Cheng XL, Qu Y, et al. Computer navigation-assisted minimally invasive percutaneous screw placement for pelvic fractures. World J Clin Cases, 2020, 8(12): 2464-2472.
|
17. |
Hansen DG, Fabbri N. Minimally invasive fixation of pelvic metastases by CT-assisted surgical navigation. Instr Course Lect, 2021, 70: 493-502.
|
18. |
Catala-Lehnen P, Nüchtern JV, Briem D, et al. Comparison of 2D and 3D navigation techniques for percutaneous screw insertion into the scaphoid: results of an experimental cadaver study. Comput Aided Surg, 2011, 16(6): 280-287.
|