1. |
Chouirfa H, Bouloussa H, Migonney V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater, 2019, 83: 37-54.
|
2. |
Spriano S, Yamaguchi S, Baino F, et al. A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater, 2018, 79: 1-22.
|
3. |
Jiang H, Ma X, Zhou W, et al. The effects of hierarchical micro/nano-structured titanium surface on osteoblast proliferation and differentiation under diabetic conditions. Implant Dent, 2017, 26(2): 263-269.
|
4. |
Ren B, Wan Y, Liu C, et al. Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study. Mater Sci Eng C Mater Biol Appl, 2021, 118: 111505. doi: 10.1016/j.msec.2020.111505.
|
5. |
Tkach M, Théry C. Communication by extracellular vesicles: Where we are and where we need to go. Cell, 2016, 164(6): 1226-1232.
|
6. |
Li X, Jiang C, Zhao J. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function. J Diabetes Complications, 2016, 30(6): 986-992.
|
7. |
Jia Y, Zhu Y, Qiu S, et al. Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Res Ther, 2019, 10(1): 12-25.
|
8. |
曹骑麟, 王婷, 熊伟, 等. Exos-ADSCs-nHAC/PLGA组织工程骨对大鼠颅骨缺损修复的实验研究. 中国美容整形外科杂志, 2021, 32(4): 234-237.
|
9. |
Rodrigues M, Fan J, Lyon C, et al. Role of extracellular vesicles in viral and bacterial infections: Pathogenesis, diagnostics, and therapeutics. Theranostics, 2018, 8(10): 2709-2721.
|
10. |
Domvri K, Petanidis S, Anestakis D, et al. Exosomal lncRNA PCAT-1 promotes Kras-associated chemoresistance via immunosuppressive miR-182/miR-217 signaling and p27/CDK6 regulation. Oncotarget, 2020, 11(29): 2847-2862.
|
11. |
Geng Z, Yu Y, Li Z, et al. miR-21 promotes osseointegration and mineralization through enhancing both osteogenic and osteoclastic expression. Mater Sci Eng C Mater Biol Appl, 2020, 111: 110785. doi: 10.1016/j.msec.2020.110785.
|
12. |
Zhai M, Zhu Y, Yang M, et al. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles. Adv Sci (Weinh), 2020, 7(19): 2001334. doi: 10.1002/advs.202001334.
|
13. |
Ji Y, Wang M, Liu W, et al. Chitosan/nHAC/PLGA microsphere vehicle for sustained release of rhBMP-2 and its derived synthetic oligopeptide for bone regeneration. J Biomed Mater Res A, 2017, 105(6): 1593-1606.
|
14. |
Sun T, Yao S, Liu M, et al. Composite scaffolds of mineralized natural extracellular matrix on true bone ceramic induce bone regeneration through Smad1/5/8 and ERK1/2 pathways. Tissue Eng Part A, 2018, 24(5-6): 502-515.
|
15. |
Tsao YT, Huang YJ, Wu HH, et al. Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. Int J Mol Sci, 2017, 18(1): 159. doi: 10.3390/ijms18010159.
|
16. |
Diomede F, Marconi GD, Fonticoli L, et al. Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci, 2020, 21(9): 3242. doi: 10.3390/ijms21093242.
|
17. |
Zhang Y, Hao Z, Wang P, et al. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Prolif, 2019, 52(2): e12570. doi: 10.1111/cpr.12570.
|
18. |
Hu K, Olsen BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest, 2016, 126(2): 509-526.
|