1. |
Xu H, Wang C, Liu C, et al. Cotransplantation of mesenchymal stem cells and endothelial progenitor cells for treating steroid-induced osteonecrosis of the femoral head. Stem Cells Transl Med, 2021, 10(5): 781-796.
|
2. |
Shang G, Wang Y, Xu Y, et al. Long non-coding RNA TCONS_00041960 enhances osteogenesis and inhibits adipogenesis of rat bone marrow mesenchymal stem cell by targeting miR-204-5p and miR-125a-3p. J Cell Physiol, 2018, 233(8): 6041-6051.
|
3. |
Fu F, Huang Z, Ye H, et al. Mechanisms and molecular targets of the Tao-Hong-Si-Wu-Tang formula for treatment of osteonecrosis of femoral head: A network pharmacology study. Evid Based Complement Alternat Med, 2020, 2020: 7130105. doi: 10.1155/2020/7130105.
|
4. |
Kuang MJ, Huang Y, Zhao XG, et al. Exosomes derived from Wharton’s jelly of human umbilical cord mesenchymal stem cells reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis of the femoral head in rats via the miR-21-PTEN-AKT signalling pathway. Int J Biol Sci, 2019, 15(9): 1861-1871.
|
5. |
Johnston JC, Haile A, Wang D, et al. Dexamethasone treatment alters function of adipocytes from a mesenchymal stromal cell line. Biochem Biophys Res Commun, 2014, 451(4): 473-479.
|
6. |
Sheng H, Sheng CJ, Cheng XY, et al. Pathomorphological changes of bone marrow adipocytes in process of steroid-associated osteonecrosis. Int J Clin Exp Pathol, 2013, 6(6): 1046-1050.
|
7. |
Weinstein RS. Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med, 2011, 365(1): 62-70.
|
8. |
Mont MA, Salem HS, Piuzzi NS, et al. Nontraumatic osteonecrosis of the femoral head: Where do we stand today?: A 5-year update. J Bone Joint Surg (Am), 2020, 102(12): 1084-1099.
|
9. |
Weinstein RS, Wan C, Liu Q, et al. Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell, 2010, 9(2): 147-161.
|
10. |
Li Z, Yang A, Yin X, et al. Mesenchymal stem cells promote endothelial progenitor cell migration, vascularization, and bone repair in tissue-engineered constructs via activating CXCR2-Src-PKL/Vav2-Rac1. FASEB J, 2018, 32(4): 2197-2211.
|
11. |
张庆宇, 高福强, 程立明, 等. 淫羊藿苷对骨微血管内皮细胞自噬及外泌体产生的影响. 中国修复重建外科杂志, 2019, 33(5): 568-577.
|
12. |
Yu H, Liu P, Zuo W, et al. Decreased angiogenic and increased apoptotic activities of bone microvascular endothelial cells in patients with glucocorticoid-induced osteonecrosis of the femoral head. BMC Musculoskelet Disord, 2020, 21(1): 277. doi: 10.1186/s12891-020-03225-1.
|
13. |
Nishimura T, Matsumoto T, Nishino M, et al. Histopathologic study of veins in steroid treated rabbits. Clin Orthop Relat Res, 1997, (334): 37-42.
|
14. |
Kerachian MA, Séguin C, Harvey EJ. Glucocorticoids in osteonecrosis of the femoral head: a new understanding of the mechanisms of action. J Steroid Biochem Mol Biol, 2009, 114(3-5): 121-128.
|
15. |
Huang C, Wen Z, Niu J, et al. Steroid-induced osteonecrosis of the femoral head: Novel insight into the roles of bone endothelial cells in pathogenesis and treatment. Front Cell Dev Biol, 2021, 9: 777697. doi: 10.3389/fcell.2021.777697.
|
16. |
Yu H, Yue J, Wang W, et al. Icariin promotes angiogenesis in glucocorticoid-induced osteonecrosis of femoral heads: In vitro and in vivo studies. J Cell Mol Med, 2019, 23(11): 7320-7330.
|
17. |
Cheng CF, Chien-Fu Lin J, Tsai FJ, et al. Protective effects and network analysis of natural compounds obtained from Radix dipsaci, Eucommiae cortex, and Rhizoma drynariae against RANKL-induced osteoclastogenesis in vitro. J Ethnopharmacol, 2019, 244: 112074. doi: 10.1016/j.jep.2019.112074.
|
18. |
Yang L, Li H, Yang M, et al. Exploration in the mechanism of Kaempferol for the treatment of gastric cancer based on network pharmacology. Biomed Res Int, 2020, 2020: 5891016. doi: 10.1155/2020/5891016.
|
19. |
Wong SK, Chin KY, Ima-Nirwana S. The osteoprotective effects of Kaempferol: The evidence from in vivo and in vitro studies. Drug Des Devel Ther, 2019, 13: 3497-3514.
|
20. |
Xie B, Zeng Z, Liao S, et al. Kaempferol ameliorates the inhibitory activity of dexamethasone in the osteogenesis of MC3T3-E1 cells by JNK and p38-MAPK pathways. Front Pharmacol, 2021, 12: 739326. doi: 10.3389/fphar.2021.739326.
|
21. |
Wu X, Wang Y, Fan X, et al. Extracorporeal shockwave relieves endothelial injury and dysfunction in steroid-induced osteonecrosis of the femoral head via miR-135b targeting FOXO1: in vitro and in vivo studies. Aging (Albany NY), 2022, 14(1): 410-429.
|
22. |
An F, Zhang L, Gao H, et al. Variants in RETN gene are associated with steroid-induced osteonecrosis of the femoral head risk among Han Chinese people. J Orthop Surg Res, 2020, 15(1): 96. doi: 10.1186/s13018-020-1557-3.
|
23. |
Kim TW, Lee SY, Kim M, et al. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis, 2018, 9(9): 875. doi: 10.1038/s41419-018-0930-1.
|
24. |
Wu W, Yang B, Qiao Y, et al. Kaempferol protects mitochondria and alleviates damages against endotheliotoxicity induced by doxorubicin. Biomed Pharmacother, 2020, 126: 110040. doi: 10.1016/j.biopha.2020.110040.
|
25. |
Yao H, Sun J, Wei J, et al. Kaempferol protects blood vessels from damage induced by oxidative stress and inflammation in association with the Nrf2/HO-1 signaling pathway. Front Pharmacol, 2020, 11: 1118. doi: 10.3389/fphar.2020.01118.
|
26. |
Adhikary S, Choudhary D, Ahmad N, et al. Dietary flavonoid Kaempferol inhibits glucocorticoid-induced bone loss by promoting osteoblast survival. Nutrition, 2018, 53: 64-76.
|
27. |
Tao SC, Yuan T, Rui BY, et al. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics, 2017, 7(3): 733-750.
|
28. |
Wang C, Xu H, Liu C, et al. CaO2/gelatin oxygen slow-releasing microspheres facilitate tissue engineering efficiency for the osteonecrosis of femoral head by enhancing the angiogenesis and survival of grafted bone marrow mesenchymal stem cells. Biomater Sci, 2021, 9(8): 3005-3018.
|
29. |
Zhang B, Yi J, Zhang CL, et al. MiR-146a inhibits proliferation and induces apoptosis in murine osteoblastic MC3T3-E1 by regulating Bcl2. Eur Rev Med Pharmacol Sci, 2017, 21(17): 3754-3762.
|
30. |
Sun F, Zhou JL, Wei SX, et al. Glucocorticoids induce osteonecrosis of the femoral head in rats via PI3K/AKT/FOXO1 signaling pathway. PeerJ, 2022, 10: e13319. doi: 10.7717/peerj.13319.
|
31. |
Peng P, Nie Z, Sun F, et al. Glucocorticoids induce femoral head necrosis in rats through the ROS/JNK/c-Jun pathway. FEBS Open Bio, 2021, 11(1): 312-321.
|
32. |
Ma X, Su P, Yin C, et al. The roles of FoxO transcription factors in regulation of bone cells function. Int J Mol Sci, 2020, 21(3): 692. doi: 10.3390/ijms21030692.
|
33. |
Gan L, Leng Y, Min J, et al. Kaempferol promotes the osteogenesis in rBMSCs via mediation of SOX2/miR-124-3p/PI3K/Akt/mTOR axis. Eur J Pharmacol, 2022, 927: 174954. doi: 10.1016/j.ejphar.2022.174954.
|
34. |
Chen XJ, Shen YS, He MC, et al. Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway. Biomed Pharmacother, 2019, 112: 108746. doi: 10.1016/j.biopha.2019.108746.
|
35. |
Park JH, Seo JH, Jeon HY, et al. Lentivirus-mediated VEGF knockdown suppresses gastric cancer cell proliferation and tumor growth in vitro and in vivo. Onco Targets Ther, 2020, 13: 1331-1341.
|
36. |
Mitsiogianni M, Koutsidis G, Mavroudis N, et al. The role of isothiocyanates as cancer chemo-preventive, chemo-therapeutic and anti-melanoma agents. Antioxidants (Basel), 2019, 8(4): 106. doi: 10.3390/antiox8040106.
|
37. |
Hu WH, Wang HY, Xia YT, et al. Kaempferol, a major flavonoid in ginkgo folium, potentiates angiogenic functions in cultured endothelial cells by binding to vascular endothelial growth factor. Front Pharmacol, 2020, 11: 526. doi: 10.3389/fphar.2020.00526.
|