1. |
Boushell MK, Hung CT, Hunziker EB, et al. Current strategies for integrative cartilage repair. Connect Tissue Res, 2017, 58(5): 393-406.
|
2. |
陆定贵, 林佳杰, 姚顺晗, 等. 关节软骨损伤修复的临床研究进展. 微创医学, 2021, 16(4): 538-541.
|
3. |
Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med, 1994, 331(14): 889-895.
|
4. |
王新伟, 赵英杰, 常艳, 等. 间充质干细胞治疗骨关节炎软骨损伤: 作用、应用与问题. 中国组织工程研究, 2021, 25(31): 5053-5058.
|
5. |
Liu X, Zheng L, Zhou Y, et al. BMSC transplantation aggravates inflammation, oxidative stress, and fibrosis and impairs skeletal muscle regeneration. Front Physiol, 2019, 10: 87. doi: 10.3389/fphys.2019.00087.
|
6. |
Zhang R, Ma J, Han J, et al. Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis. Am J Transl Res, 2019, 11(10): 6275-6289.
|
7. |
Girisa S, Saikia Q, Bordoloi D, et al. Xanthohumol from Hop: Hope for cancer prevention and treatment. IUBMB Life, 2021, 73(8): 1016-1044.
|
8. |
林旭晨, 祝海年, 王增顺, 等. 黄腐酚对骨关节炎模型小鼠炎性因子及关节软骨的作用. 中国组织工程研究, 2022, 26(5): 676-681.
|
9. |
台会文, 周朝华. 用线型聚合物作致孔剂制备的大孔树脂的形态与孔结构的研究. 河北工学院学报, 1991, (2): 95-102.
|
10. |
Zhu Y, Zhang Y, Liu Y, et al. The influence of Chm-Ⅰ knockout on ectopic cartilage regeneration and homeostasis maintenance. Tissue Eng Part A, 2015, 21(3-4): 782-792.
|
11. |
李强强, 谢亚东, 杨国清, 等. 骨髓间充质干细胞成骨分化的研究进展. 医学综述, 2022, 28(3): 434-438.
|
12. |
Mariani E, Lisignoli G, Borzì RM, et al. Biomaterials: foreign bodies or tuners for the immune response? Int J Mol Sci, 2019, 20(3): 636. doi: 10.3390/ijms20030636.
|
13. |
Sumayya AS, Muraleedhara Kurup G. In vitro anti-inflammatory potential of marine macromolecules cross-linked bio-composite scaffold on LPS stimulated RAW264.7 macrophage cells for cartilage tissue engineering applications. J Biomater Sci Polym Ed, 2021, 32(8): 1040-1056.
|
14. |
Martínez-Sanmiguel JJ, G Zarate-Triviño D, Hernandez-Delgadillo R, et al. Anti-inflammatory and antimicrobial activity of bioactive hydroxyapatite/silver nanocomposites. J Biomater Appl, 2019, 33(10): 1314-1326.
|
15. |
Fasolino I, Raucci MG, Soriente A, et al. Osteoinductive and anti-inflammatory properties of chitosan-based scaffolds for bone regeneration. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110046. doi: 10.1016/j.msec.2019.110046.
|
16. |
Später T, Mariyanats AO, Syachina MA, et al. In vitro and in vivo analysis of adhesive, anti-inflammatory, and proangiogenic properties of novel 3D printed hyaluronic acid glycidyl methacrylate hydrogel scaffolds for tissue engineering. ACS Biomater Sci Eng, 2020, 6(10): 5744-5757.
|
17. |
Liang JP, Accolla RP, Jiang K, et al. Controlled release of anti-inflammatory and proangiogenic factors from macroporous scaffolds. Tissue Eng Part A, 2021, 27(19-20): 1275-1289.
|
18. |
Go DP, Palmer JA, Gras SL, et al. Coating and release of an anti-inflammatory hormone from PLGA microspheres for tissue engineering. J Biomed Mater Res A, 2012, 100(2): 507-517.
|
19. |
Ziadlou R, Rotman S, Teuschl A, et al. Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111701. doi: 10.1016/j.msec.2020.111701.
|
20. |
Zheng T, Zhou Q, Huang J, et al. Xanthohumol inhibited mechanical stimulation-induced articular ECM degradation by mediating lncRNA GAS5/miR-27a axis. Front Pharmacol, 2021, 12: 737552. doi: 10.3389/fphar.2021.737552.
|
21. |
Zhang M, Zhang R, Zheng T, et al. Xanthohumol attenuated inflammation and ECM degradation by mediating HO-1/C/EBPβ pathway in osteoarthritis chondrocytes. Front Pharmacol, 2021, 12: 680585. doi: 10.3389/fphar.2021.680585.
|
22. |
Cho YC, Kim HJ, Kim YJ, et al. Differential anti-inflammatory pathway by xanthohumol in IFN-gamma and LPS-activated macrophages. Int Immunopharmacol, 2008, 8(4): 567-573.
|
23. |
Rocha CV, Gonçalves V, da Silva MC, et al. PLGA-based composites for various biomedical applications. Int J Mol Sci, 2022, 23(4): 2034. doi: 10.3390/ijms23042034.
|
24. |
Fonseca M, Macedo AS, Lima SAC, et al. Evaluation of the antitumour and antiproliferative effect of xanthohumol-loaded PLGA nanoparticles on melanoma. Materials (Basel), 2021, 14(21): 6421. doi: 10.3390/ma14216421.
|
25. |
Wang CC, Ho YH, Hung CF, et al. Xanthohumol, an active constituent from hope, affords protection against kainic acid-induced excitotoxicity in rats. Neurochem Int, 2020, 133: 104629. doi: 10.1016/j.neuint.2019.104629.
|
26. |
Li Z, Huang Z, Zhang H, et al. P2X7 receptor induces pyroptotic inflammation and cartilage degradation in osteoarthritis via NF-κB/NLRP3 crosstalk. Oxid Med Cell Longev, 2021, 2021: 8868361. doi: 10.1155/2021/8868361.
|
27. |
Wu CL, Harasymowicz NS, Klimak MA, et al. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartilage, 2020, 28(5): 544-554.
|
28. |
Li Y, Tong D, Liang P, et al. Cartilage-binding antibodies initiate joint inflammation and promote chronic erosive arthritis. Arthritis Res Ther, 2020, 22(1): 120. doi: 10.1186/s13075-020-02169-0.
|
29. |
Kapoor M, Martel-Pelletier J, Lajeunesse D, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol, 2011, 7(1): 33-42.
|
30. |
Pozgan U, Caglic D, Rozman B, et al. Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biol Chem, 2010, 391(5): 571-579.
|
31. |
Shi Y, Hu X, Cheng J, et al. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat Commun, 2019, 10(1): 1914. doi: 10.1038/s41467-019-09839-x.
|
32. |
Liu B, Yang L, Cui Z, et al. Anti-TNF-α therapy alters the gut microbiota in proteoglycan-induced ankylosing spondylitis in mice. Microbiologyopen, 2019, 8(12): e927. doi: 10.1002/mbo3.927.
|
33. |
Lefebvre V, Peeters-Joris C, Vaes G. Modulation by interleukin 1 and tumor necrosis factor alpha of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. Biochim Biophys Acta, 1990, 1052(3): 366-378. doi: 10.1016/0167-4889(90)90145-4.
|