1. |
Meng B, Bunch J, Burton D, et al. Lumbar interbody fusion: recent advances in surgical techniques and bone healing strategies. Eur Spine J, 2021, 30(1): 22-33.
|
2. |
D’Souza M, Macdonald NA, Gendreau JL, et al. Graft materials and biologics for spinal interbody fusion. Biomedicines, 2019, 7(4): 75. doi: 10.3390/biomedicines7040075.
|
3. |
Tohmeh AG, Khorsand D, Watson B, et al. Radiographical and clinical evaluation of extreme lateral interbody fusion: effects of cage size and instrumentation type with a minimum of 1-year follow-up. Spine (Phila Pa 1976), 2014, 39(26): E1582-E1591.
|
4. |
Calvo-Echenique A, Cegoñino J, Chueca R, et al. Stand-alone lumbar cage subsidence: A biomechanical sensitivity study of cage design and placement. Comput Methods Programs Biomed, 2018, 162: 211-219.
|
5. |
Zhang X, Wu H, Chen Y, et al. Importance of the epiphyseal ring in OLIF stand-alone surgery: a biomechanical study on cadaveric spines. Eur Spine J, 2021, 30(1): 79-87.
|
6. |
Schnake KJ, Rappert D, Storzer B, et al. Lumbar fusion-Indications and techniques. Orthopade, 2019, 48(1): 50-58.
|
7. |
Cheong VS, Roberts BC, Kadirkamanathan V, et al. Bone remodelling in the mouse tibia is spatio-temporally modulated by oestrogen deficiency and external mechanical loading: A combined in vivo/in silico study. Acta Biomater, 2020, 116: 302-317.
|
8. |
Jaeger A, Giber D, Bastard C, et al. Risk factors of instrumentation failure and pseudarthrosis after stand-alone L5-S1 anterior lumbar interbody fusion: a retrospective cohort study. J Neurosurg Spine, 2019, 31(3): 338-346.
|
9. |
Buell TJ, Shaffrey CI, Bess S, et al. Multicenter assessment of outcomes and complications associated with transforaminal versus anterior lumbar interbody fusion for fractional curve correction. J Neurosurg Spine, 2021, 35(6): 729-742.
|
10. |
Rastegar S, Arnoux PJ, Wang X, et al. Biomechanical analysis of segmental lumbar lordosis and risk of cage subsidence with different cage heights and alternative placements in transforaminal lumbar interbody fusion. Comput Methods Biomech Biomed Engin, 2020, 23(9): 456-466.
|
11. |
Satake K, Kanemura T, Yamaguchi H, et al. Predisposing factors for intraoperative endplate injury of extreme lateral interbody fusion. Asian Spine J, 2016, 10(5): 907-914.
|
12. |
赵龙, 曾建成, 谢天航, 等. 腰椎椎间融合术后椎间融合器沉降的研究进展. 中国修复重建外科杂志, 2021, 35(8): 1063-1067.
|
13. |
Wu H, Shan Z, Zhao F, et al. Poor bone quality, multilevel surgery, and narrow and tall cages are associated with intraoperative endplate injuries and late-onset cage subsidence in lateral lumbar interbody fusion: A systematic review. Clin Orthop Relat Res, 2022, 480(1): 163-188.
|
14. |
Pisano AJ, Fredericks DR, Steelman T, et al. Lumbar disc height and vertebral Hounsfield units: association with interbody cage subsidence. Neurosurg Focus, 2020, 49(2): E9. doi: 10.3171/2020.4.FOCUS20286.
|
15. |
Hiyama A, Sakai D, Katoh H, et al. Comparative study of cage subsidence in single-level lateral lumbar interbody fusion. J Clin Med, 2022, 11(5): 1374. doi: 10.3390/jcm11051374.
|
16. |
Du L, Sun XJ, Zhou TJ, et al. The role of cage height on the flexibility and load sharing of lumbar spine after lumbar interbody fusion with unilateral and bilateral instrumentation: a biomechanical study. BMC Musculoskelet Disord, 2017, 18(1): 474. doi: 10.1186/s12891-017-1845-1.
|
17. |
Kim YH, Ha KY, Kim KT, et al. Risk factors for intraoperative endplate injury during minimally-invasive lateral lumbar interbody fusion. Sci Rep, 2021, 11(1): 20149. doi: 10.1038/s41598-021-99751-6.
|
18. |
尚志恒, 吴威, 李聪, 等. 有限元分析融合器高度与位置对TLIF术后节段性腰椎前凸和融合器下沉的影响. 颈腰痛杂志, 2022, 43(1): 15-20.
|
19. |
Pinto EM, Teixeira A, Frada R, et al. Surgical risk factors associated with the development of adjacent segment pathology in the lumbar spine. EFORT Open Rev, 2021, 6(10): 966-972.
|
20. |
Rohlmann A, Burra NK, Zander T, et al. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. Eur Spine J, 2007, 16(8): 1223-1231.
|
21. |
Lu X, Li D, Wang H, et al. Biomechanical effects of interbody cage height on adjacent segments in patients with lumbar degeneration: a 3D finite element study. J Orthop Surg Res, 2022, 17(1): 325. doi: 10.1186/s13018-022-03220-3.
|
22. |
Kaito T, Hosono N, Mukai Y, et al. Induction of early degeneration of the adjacent segment after posterior lumbar interbody fusion by excessive distraction of lumbar disc space. J Neurosurg Spine, 2010, 12(6): 671-679.
|
23. |
Kaito T, Hosono N, Fuji T, et al. Disc space distraction is a potent risk factor for adjacent disc disease after PLIF. Arch Orthop Trauma Surg, 2011, 131(11): 1499-1507.
|
24. |
Feng Y, Chen L, Gu Y, et al. Restoration of the spinopelvic sagittal balance in isthmic spondylolisthesis: posterior lumbar interbody fusion may be better than posterolateral fusion. Spine J, 2015, 15(7): 1527-1535.
|
25. |
Tian H, Wu A, Guo M, et al. Adequate restoration of disc height and segmental lordosis by lumbar interbody fusion decreases adjacent segment degeneration. World Neurosurg, 2018, 118: e856-e864.
|
26. |
Feng Y, Chen L, Gu Y, et al. Influence of the posterior lumbar interbody fusion on the sagittal spino-pelvic parameters in isthmic L5-S1 spondylolisthesis. J Spinal Disord Tech, 2014, 27(1): E20-E25.
|
27. |
蔡峰, 顾勇, 冯煜, 等. 个体化选择融合器大小对腰椎融合术后疗效的影响. 健康大视, 2019, (23): 20.
|
28. |
Ferrero E, Guigui P. Current trends in the management of degenerative lumbar spondylolisthesis. EFORT Open Rev, 2018, 3(5): 192-199.
|
29. |
Uribe JS, Harris JE, Beckman JM, et al. Finite element analysis of lordosis restoration with anterior longitudinal ligament release and lateral hyperlordotic cage placement. Eur Spine J, 2015, 24 Suppl 3: 420-426.
|
30. |
Hiyama A, Katoh H, Sakai D, et al. Cluster analysis to predict factors associated with sufficient indirect decompression immediately after single-level lateral lumbar interbody fusion. J Clin Neurosci, 2021, 83: 112-118.
|
31. |
Landham PR, Don AS, Robertson PA. Do position and size matter? An analysis of cage and placement variables for optimum lordosis in PLIF reconstruction. Eur Spine J, 2017, 26(11): 2843-2850.
|
32. |
Aoki Y, Yamagata M, Nakajima F, et al. Examining risk factors for posterior migration of fusion cages following transforaminal lumbar interbody fusion: a possible limitation of unilateral pedicle screw fixation. J Neurosurg Spine, 2010, 13(3): 381-387.
|
33. |
Zhao FD, Yang W, Shan Z, et al. Cage migration after transforaminal lumbar interbody fusion and factors related to it. Orthop Surg, 2012, 4(4): 227-232.
|
34. |
Le TV, Baaj AA, Dakwar E, et al. Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine (Phila Pa 1976), 2012, 37(14): 1268-1273.
|
35. |
Wang H, Chen W, Jiang J, et al. Analysis of the correlative factors in the selection of interbody fusion cage height in transforaminal lumbar interbody fusion. BMC Musculoskelet Disord, 2016, 17: 9. doi: 10.1186/s12891-016-0866-5.
|
36. |
吴金伟, 邹伟民, 许汉权, 等. 腰椎椎间融合术中腰椎融合器高度选择的影响因素分析. 广东医学, 2019, 40(5): 720-723.
|