1. |
Rahu M, Kolts I, Põldoja E, et al. Rotator cuff tendon connections with the rotator cable. Knee Surg Sports Traumatol Arthrosc, 2017, 25(7): 2047-2050.
|
2. |
Vecchini E, Ricci M, Elena N, et al. Rotator cuff repair with single row technique provides satisfying clinical results despite consistent MRI retear rate. J Orthop Traumatol, 2022, 23(1): 23. doi: 10.1186/s10195-022-00642-x.
|
3. |
Nyffeler RW, Schenk N, Bissig P. Can a simple fall cause a rotator cuff tear? Literature review and biomechanical considerations. Int Orthop, 2021, 45(6): 1573-1582.
|
4. |
Khazzam M, Sager B, Box HN, et al. The effect of age on risk of retear after rotator cuff repair: a systematic review and meta-analysis. JSES Int, 2020, 4(3): 625-631.
|
5. |
de Andrade ALL, Garcia TA, Brandão HS, et al. Benefits of patch augmentation on rotator cuff repair: A systematic review and meta-analysis. Orthop J Sports Med, 2022, 10(3): 23259671211071146. doi: 10.1177/23259671211071146.
|
6. |
刘利国, 宋鑫, 张谢卓, 等. 肩袖韧带止点的解剖研究. 新疆医科大学学报, 2017, 40(5): 630-633.
|
7. |
Põldoja E, Rahu M, Kask K, et al. Blood supply of the subacromial bursa and rotator cuff tendons on the bursal side. Knee Surg Sports Traumatol Arthrosc, 2017, 25(7): 2041-2046.
|
8. |
Doi N, Izaki T, Miyake S, et al. Intraoperative evaluation of blood flow for soft tissues in orthopaedic surgery using indocyanine green fluorescence angiography: A pilot study. Bone Joint Res, 2019, 8(3): 118-125.
|
9. |
Neer CS. Anterior acromioplasty for the chronic impingement syndrome in the shoulder. 1972. J Bone Joint Surg (Am), 2005, 87(6): 1399. doi: 10.2106/JBJS.8706.cl.
|
10. |
Miyake S, Tamai M, Takeuchi Y, et al. Where and what damage occurs at the acromial undersurface in patients with rotator cuff tears? J Shoulder Elbow Surg, 2020, 29(10): 2065-2071.
|
11. |
Kaur R, Dahuja A, Garg S, et al. Correlation of acromial morphology in association with rotator cuff tear: a retrospective study. Pol J Radiol, 2019, 84: e459-e463.
|
12. |
Liu CT, Miao JQ, Wang H, et al. The association between acromial anatomy and articular-sided partial thickness of rotator cuff tears. BMC Musculoskelet Disord, 2021, 22(1): 760. doi: 10.1186/s12891-021-04639-1.
|
13. |
Chansky HA, Iannotti JP. The vascularity of the rotator cuff. Clin Sports Med, 1991, 10(4): 807-822.
|
14. |
Oh JH, Park MS, Rhee SM. Treatment strategy for irreparable rotator cuff tears. Clin Orthop Surg, 2018, 10(2): 119-134.
|
15. |
Kadi R, Milants A, Shahabpour M. Shoulder anatomy and normal variants. J Belg Soc Radiol, 2017, 101(Suppl 2): 3. doi: 10.5334/jbr-btr.1467.
|
16. |
邹阿鹏, 安丰敏, 辛运强. 冈上肌腱撕裂查体试验的诊断价值研究. 中国骨伤, 2022, 35(3): 220-224.
|
17. |
Jobe FW, Moynes DR. Delineation of diagnostic criteria and a rehabilitation program for rotator cuff injuries. Am J Sports Med, 1982, 10(6): 336-339.
|
18. |
Liu YL, Ao YF, Yan H, et al. The hug-up test: A new, sensitive diagnostic test for supraspinatus tears. Chin Med J (Engl), 2016, 129(2): 147-153.
|
19. |
张廷才, 司道文, 张宇新. 冈上肌腱的解剖及应用. 山东医药, 2009, 49(30): 19-20.
|
20. |
Smith MV, Calfee RP, Baumgarten KM, et al. Upper extremity-specific measures of disability and outcomes in orthopaedic surgery. J Bone Joint Surg (Am), 2012, 94(3): 277-285.
|
21. |
Vrotsou K, Ávila M, Machón M, et al. Constant-Murley Score: systematic review and standardized evaluation in different shoulder pathologies. Qual Life Res, 2018, 27(9): 2217-2226.
|
22. |
黄秋, 吴阳, 黎晓雨, 等. 关节镜下单排改良Mason-Allen技术与缝线桥技术治疗肩袖撕裂的meta分析[J/OL]. 重庆医学: 1-10[2022-05-22]. http://kns.cnki.net/kcms/detail/50.1097.R.20220424.2002.016.html.
|
23. |
Sasanuma H, Sugimoto H, Fujita A, et al. Characteristics of dynamic magnetic resonance imaging of idiopathic severe frozen shoulder. J Shoulder Elbow Surg, 2017, 26(2): e52-e57.
|
24. |
Sasanuma H, Sugimoto H, Iijima Y, et al. Blood flow evaluation by dynamic magnetic resonance imaging of symptomatic rotator cuff tears and frozen shoulders. J Shoulder Elbow Surg, 2018, 27(12): e372-e379.
|
25. |
Constant CR, Murley AH. A clinical method of functional assessment of the shoulder. Clin Orthop Relat Res, 1987, (214): 160-164.
|
26. |
Weiner DS, Macnab I. Superior migration of the humeral head. A radiological aid in the diagnosis of tears of the rotator cuff. J Bone Joint Surg (Br), 1970, 52(3): 524-527.
|
27. |
Kim SJ, Park JS, Lee KH, et al. The development of a quantitative scoring system to predict whether a large-to-massive rotator cuff tear can be arthroscopically repaired. Bone Joint J, 2016, 98-B(12): 1656-1661.
|
28. |
Razmjou H, Palinkas V, Christakis M, et al. Diagnostic value of acromiohumeral distance in rotator cuff pathology: Implications for advanced-practice physiotherapists. Physiother Can, 2020, 72(1): 52-62.
|
29. |
van de Sande MA, Rozing PM. Proximal migration can be measured accurately on standardized anteroposterior shoulder radiographs. Clin Orthop Relat Res, 2006, 443: 260-265.
|
30. |
Park SH, Choi CH, Yoon HK, et al. What can the radiological parameters of superior migration of the humeral head tell us about the reparability of massive rotator cuff tears? PLoS One, 2020, 15(4): e0231843. doi: 10.1371/journal.pone.0231843.
|
31. |
Pepe M, Kocadal O, Gunes Z, et al. Subacromial space volume in patients with rotator cuff tear: The effect of surgical repair. Acta Orthop Traumatol Turc, 2018, 52(6): 419-422.
|
32. |
Turan K, Çabuk H, Köroğlu C, et al. Increased acromiohumeral distance in a double-row arthroscopic rotator cuff surgery compared to a single-row surgery after 12 months. J Orthop Surg Res, 2021, 16(1): 385. doi: 10.1186/s13018-021-02523-1.
|
33. |
Kholinne E, Kwak JM, Sun Y, et al. The relationship between rotator cuff integrity and acromiohumeral distance following open and arthroscopic rotator cuff repair. SICOT J, 2021, 7: 23. doi: 10.1051/sicotj/2021012.
|
34. |
Hall MM, Allen GM, Allison S, et al. Recommended musculoskeletal and sports ultrasound terminology: a Delphi-based consensus statement. Br J Sports Med, 2022, 56(6): 310-319.
|
35. |
Farooqi AS, Lee A, Novikov D, et al. Diagnostic accuracy of ultrasonography for rotator cuff tears: A systematic review and meta-analysis. Orthop J Sports Med, 2021, 9(10): 23259671211035106. doi: 10.1177/23259671211035106.
|
36. |
Zhang X, Gu X, Zhao L. Comparative analysis of real-time dynamic ultrasound and magnetic resonance imaging in the diagnosis of rotator cuff tear injury. Evid Based Complement Alternat Med, 2021, 2021: 2107693. doi: 10.1155/2021/2107693.
|
37. |
Mohtasib RS, Alzahrani AM, Asiri YN, et al. Accuracy of shoulder ultrasound examination for diagnosis of rotator cuff pathologies: a single-center retrospective study. Ann Saudi Med, 2019, 39(3): 162-171.
|
38. |
黄家兴, 王家炜, 朱博, 等. 剪切波超声弹性成像对冈上肌腱滑囊侧部分撕裂的诊断价值分析[J/OL]. 重庆医学: 1-11[2022-05-18]. http://kns.cnki.net/kcms/detail/50.1097.R.20220426.1106.002.html.
|
39. |
Martins-Bach AB, Bachasson D, Araujo ECA, et al. Non-invasive assessment of skeletal muscle fibrosis in mice using nuclear magnetic resonance imaging and ultrasound shear wave elastography. Sci Rep, 2021, 11(1): 284. doi: 10.1038/s41598-020-78747-8.
|
40. |
Lawrence RL, Ruder MC, Moutzouros V, et al. Ultrasound shear wave elastography and its association with rotator cuff tear characteristics. JSES Int, 2021, 5(3): 500-506.
|
41. |
Huang J, Jiang L, Wang J, et al. Ultrasound shear wave elastography-derived tissue stiffness is positively correlated with rotator cuff tear size and muscular degeneration. Knee Surg Sports Traumatol Arthrosc, 2022, 30(7): 2492-2499.
|
42. |
Itoigawa Y, Wada T, Kawasaki T, et al. Supraspinatus muscle and tendon stiffness changes after arthroscopic rotator cuff repair: A shear wave elastography assessment. J Orthop Res, 2020, 38(1): 219-227.
|
43. |
Ruder MC, Lawrence RL, Soliman SB, et al. Presurgical tear characteristics and estimated shear modulus as predictors of repair integrity and shoulder function one year after rotator cuff repair. JSES Int, 2021, 6(1): 62-69.
|
44. |
McCrum E. MR imaging of the rotator cuff. Magn Reson Imaging Clin N Am, 2020, 28(2): 165-179.
|
45. |
Sugaya H, Maeda K, Matsuki K, et al. Functional and structural outcome after arthroscopic full-thickness rotator cuff repair: single-row versus dual-row fixation. Arthroscopy, 2005, 21(11): 1307-1316.
|
46. |
Malavolta EA, Assunção JH, Ramos FF, et al. Serial structural MRI evaluation of arthroscopy rotator cuff repair: does Sugaya’s classification correlate with the postoperative clinical outcomes? Arch Orthop Trauma Surg, 2016, 136(6): 791-797.
|
47. |
Muniandy M, Niglis L, Claude Dosch J, et al. Postoperative rotator cuff integrity: can we consider type 3 Sugaya classification as retear? J Shoulder Elbow Surg, 2021, 30(1): 97-103.
|
48. |
Hamano N, Yamamoto A, Shitara H, et al. Does successful rotator cuff repair improve muscle atrophy and fatty infiltration of the rotator cuff? A retrospective magnetic resonance imaging study performed shortly after surgery as a reference. J Shoulder Elbow Surg, 2017, 26(6): 967-974.
|
49. |
Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system. J Magn Reson Imaging, 2015, 41(4): 870-883.
|
50. |
Xie Y, Liu S, Qiao Y, et al. Quantitative T2 mapping-based tendon healing is related to the clinical outcomes during the first year after arthroscopic rotator cuff repair. Knee Surg Sports Traumatol Arthrosc, 2021, 29(1): 127-135.
|