1. |
Kwoh YS, Hou J, Jonckheere EA, et al. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng, 1988, 35(2): 153-160.
|
2. |
Goldsmith MF. For better hip replacement results, surgeon’s best friend may be a robot. JAMA, 1992, 267(5): 613-614.
|
3. |
Nolte LP, Zamorano LJ, Jiang Z, et al. Image-guided insertion of transpedicular screws. A laboratory set-up. Spine (Phila Pa 1976), 1995, 20(4): 497-500.
|
4. |
Domb BG, El Bitar YF, Sadik AY, et al. Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study. Clin Orthop Relat Res, 2014, 472(1): 329-336.
|
5. |
Redmond JM, Gupta A, Hammarstedt JE, et al. Accuracy of component placement in robotic-assisted total hip arthroplasty. Orthopedics, 2016, 39(3): 193-199.
|
6. |
Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbecks Arch Surg, 2013, 398(4): 501-514.
|
7. |
Pflugi S, Liu L, Ecker TM, et al. A cost-effective surgical navigation solution for periacetabular osteotomy (PAO) surgery. Int J Comput Assist Radiol Surg, 2016, 11(2): 271-280.
|
8. |
Hofstetter R, Slomczykowski M, Sati M, et al. Fluoroscopy as an imaging means for computer-assisted surgical navigation. Comput Aided Surg, 1999, 4(2): 65-76.
|
9. |
Malham GM, Munday NR. Comparison of novel machine vision spinal image guidance system with existing 3D fluoroscopy-based navigation system: a randomized prospective study. Spine J, 2022, 22(4): 561-569.
|
10. |
Bargar WL, Parise CA, Hankins A, et al. Fourteen year follow-up of randomized clinical trials of active robotic-assisted total hip arthroplasty. J Arthroplasty, 2018, 33(3): 810-814.
|
11. |
Adams SB, Spritzer CE, Hofstaetter SG, et al. Computer-assisted tibia preparation for total ankle arthroplasty: a cadaveric study. Int J Med Robot, 2007, 3(4): 336-340.
|
12. |
Reb CW, Berlet GC. Experience with navigation in total ankle arthroplasty. Is it worth the cost? Foot Ankle Clin, 2017, 22(2): 455-463.
|
13. |
Wiewiorski M, Valderrabano V, Kretzschmar M, et al. CT-guided robotically-assisted infiltration of foot and ankle joints. Minim Invasive Ther Allied Technol, 2009, 18(5): 291-296.
|
14. |
Bozkurt M, Apaydin N, Işik C, et al. Robotic arthroscopic surgery: a new challenge in arthroscopic surgery Part-Ⅰ: Robotic shoulder arthroscopy; a cadaveric feasibility study. Int J Med Robot, 2011, 7(4): 496-500.
|
15. |
Bargar WL. Robots in orthopaedic surgery: past, present, and future. Clin Orthop Relat Res, 2007, 463: 31-36.
|
16. |
Lang JE, Mannava S, Floyd AJ, et al. Robotic systems in orthopaedic surgery. J Bone Joint Surg (Br), 2011, 93(10): 1296-1299.
|
17. |
Boylan M, Suchman K, Vigdorchik J, et al. Technology-assisted hip and knee arthroplasties: An analysis of utilization trends. J Arthroplasty, 2018, 33(4): 1019-1023.
|
18. |
Morelli L, Guadagni S, Di Franco G, et al. Da Vinci single site© surgical platform in clinical practice: a systematic review. Int J Med Robot, 2016, 12(4): 724-734.
|
19. |
Chun YS, Kim KI, Cho YJ, et al. Causes and patterns of aborting a robot-assisted arthroplasty. J Arthroplasty, 2011, 26(4): 621-625.
|
20. |
Du Z, Wang W, Yan Z, et al. Variable admittance control based on fuzzy reinforcement learning for minimally invasive surgery manipulator. Sensors (Basel), 2017, 17(4): 844. doi: 10.3390/s17040844.
|
21. |
Winemaker MJ. Perfect balance in total knee arthroplasty: the elusive compromise. J Arthroplasty, 2002, 17(1): 2-10.
|
22. |
Kayani B, Konan S, Pietrzak JRT, et al. Iatrogenic bone and soft tissue trauma in robotic-arm assisted total knee arthroplasty compared with conventional jig-based total knee arthroplasty: A prospective cohort study and validation of a new classification system. J Arthroplasty, 2018, 33(8): 2496-2501.
|
23. |
Chang JS, Kayani B, Wallace C, et al. Functional alignment achieves soft-tissue balance in total knee arthroplasty as measured with quantitative sensor-guided technology. Bone Joint J, 2021, 103-B(3): 507-514.
|
24. |
Tian W, Fan M, Zeng C, et al. Telerobotic spinal surgery based on 5G network: The first 12 cases. Neurospine, 2020, 17(1): 114-120.
|
25. |
Westphal R, Winkelbach S, Wahl F, et al. Robot-assisted long bone fracture reduction. Int J Robot Res, 2009, 28(10): 1259-1278.
|
26. |
Kim YH, Lee SG. Computer and robotic model of external fixation system for fracture treatment. Computational Science-Iccs 2004 Proceedings, 2004, 3039: 1081-1087.
|
27. |
Koo TK, Chao EY, Mak AF. Development and validation of a new approach for computer-aided long bone fracture reduction using unilateral external fixator. J Biomech, 2006, 39(11): 2104-2112.
|
28. |
Viceconti M, Sudanese A, Toni A, et al. A software simulation of tibial fracture reduction with external fixator. Comput Methods Programs Biomed, 1993, 40(2): 89-94.
|
29. |
Viceconti M, Andrisano AO, Toni A, et al. Automatic fracture reduction with a computer-controlled external fixator. Med Eng Phys, 1994, 16(2): 143-149.
|
30. |
Seide K, Wolter D. Corrections using the hexapod. Orthopade, 2000, 29(1): 39-46.
|
31. |
Seide K, Wolter D, Kortmann HR. Fracture reduction and deformity correction with the hexapod Ilizarov fixator. Clin Orthop Relat Res, 1999, (363): 186-195.
|
32. |
Seide K, Weinrich N, Wenzl ME, et al. Three-dimensional load measurements in an external fixator. J Biomech, 2004, 37(9): 1361-1369.
|
33. |
Faschingbauer M, Heuer HJ, Seide K, et al. Accuracy of a hexapod parallel robot kinematics based external fixator. Int J Med Robot, 2015, 11(4): 424-435.
|
34. |
Tang PF, Hu L, Du HL, et al. Novel 3D hexapod computer-assisted orthopaedic surgery system for closed diaphyseal fracture reduction. Int J Med Robot, 2012, 8(1): 17-24.
|
35. |
Füchtmeier B, Egersdoerfer S, Mai R, et al. Reduction of femoral shaft fractures in vitro by a new developed reduction robot system ‘RepoRobo’. Injury, 2004, 35 Suppl 1: S-A113S-119S. doi: 10.1016/j.injury.2004.05.019.
|
36. |
Westphal R, Winkelbach S, Gösling T, et al. A surgical telemanipulator for femur shaft fracture reduction. Int J Med Robot, 2006, 2(3): 238-250.
|
37. |
Ye R, Chen Y, Ieee. Development of a six degree of freedom (DOF) hybrid robot for femur shaft fracture reduction. IEEE International Conference on Robotics and Biomimetics (ROBIO), Bangkok, 2009: 306-311.
|
38. |
Dagnino G, Georgilas I, Tarassoli P, et al. Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery. Int J Comput Assist Radiol Surg, 2016, 11(3): 437-455.
|
39. |
Wang T, Li C, Hu L, et al. A removable hybrid robot system for long bone fracture reduction. Biomed Mater Eng, 2014, 24(1): 501-509.
|
40. |
Maeda Y, Sugano N, Saito M, et al. Robot-assisted femoral fracture reduction: preliminary study in patients and healthy volunteers. Comput Aided Surg, 2008, 13(3): 148-156.
|
41. |
Joung S, Kamon H, Liao H, et al. A robot assisted hip fracture reduction with a navigation system. Med Image Comput Comput Assist Interv, 2008, 11(Pt 2): 501-508.
|
42. |
Joung S, Liao H, Kobayashi E, et al. Hazard analysis of fracture-reduction robot and its application to safety design of fracture-reduction assisting robotic system. 2010 IEEE International Conference on Robotics and Automation, 2010: 1554-1561.
|
43. |
Hung SS, Lee MY. Functional assessment of a surgical robot for reduction of lower limb fractures. Int J Med Robot, 2010, 6(4): 413-421.
|
44. |
Sun XG, Zhu Q, Wang XS, et al. A remote control robotic surgical system for femur shaft fracture reduction. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2015: 1649-1653.
|
45. |
Du D, Liu Z, Omori S, et al. Computer-aided parachute guiding system for closed reduction of diaphyseal fractures. Int J Med Robot, 2014, 10(3): 325-331.
|
46. |
Bouazza-Marouf K, Browbank I, Hewit JR. Robotic-assisted internal fixation of femoral fractures. Proc Inst Mech Eng H, 1995, 209(1): 51-58.
|
47. |
苏永刚, 孙志彬, 朱罡, 等. 基于体感交互的骨折复位机器人控制方法实验研究. 中国生物医学工程学报, 2016, 35(3): 380-384.
|
48. |
Li C, Wang T, Hu L, et al. A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction. Proc Inst Mech Eng H, 2015, 229(9): 629-637.
|
49. |
Cutolo F, Carli S, Parchi PD, et al. AR interaction paradigm for closed reduction of long-bone fractures via external fixation. 22nd ACM Conference on Virtual Reality Software and Technology (VRST) Munich, Germany, 2016: 305-306.
|
50. |
Wang JQ, Wang Y, Feng Y, et al. Percutaneous sacroiliac screw placement: A prospective randomized comparison of robot-assisted navigation procedures with a conventional technique. Chin Med J (Engl), 2017, 130(21): 2527-2534.
|
51. |
Liu HS, Duan SJ, Liu SD, et al. Robot-assisted percutaneous screw placement combined with pelvic internal fixator for minimally invasive treatment of unstable pelvic ring fractures. Int J Med Robot, 2018, 14(5): e1927. doi: 10.1002/rcs.1927.
|
52. |
Liu HS, Duan SJ, Xin FZ, et al. Robot-assisted minimally-invasive internal fixation of pelvic ring injuries: A single-center experience. Orthop Surg, 2019, 11(1): 42-51.
|
53. |
Long T, Li KN, Gao JH, et al. Comparative study of percutaneous sacroiliac screw with or without tirobot assistance for treating pelvic posterior ring fractures. Orthop Surg, 2019, 11(3): 386-396.
|
54. |
Suero EM, Westphal R, Citak M, et al. Robotic technique improves entry point alignment for intramedullary nailing of femur fractures compared to the conventional technique: a cadaveric study. J Robot Surg, 2018, 12(2): 311-315.
|
55. |
Panzica M, Suero EM, Westphal R, et al. Robotic distal locking of intramedullary nailing: Technical description and cadaveric testing. Int J Med Robot, 2017, 13(4). doi: 10.1002/rcs.1831.
|
56. |
Lan H, Tan Z, Li KN, et al. Intramedullary nail fixation assisted by orthopaedic robot navigation for intertrochanteric fractures in elderly patients. Orthop Surg, 2019, 11(2): 255-262.
|
57. |
He M, Han W, Zhao CP, et al. Evaluation of a Bi-planar robot navigation system for insertion of cannulated screws in femoral neck fractures. Orthop Surg, 2019, 11(3): 373-379.
|
58. |
Duan SJ, Liu HS, Wu WC, et al. Robot-assisted percutaneous cannulated screw fixation of femoral neck fractures: Preliminary clinical results. Orthop Surg, 2019, 11(1): 34-41.
|
59. |
Liu B, Wu F, Chen S, et al. Robot-assisted percutaneous scaphoid fracture fixation: a report of ten patients. J Hand Surg (Eur Vol), 2019, 44(7): 685-691.
|
60. |
Leow A, Huang SC, Geng A, et al. Inverse consistent mapping in 3D deformable image registration: its construction and statistical properties. Inf Process Med Imaging, 2005, 19: 493-503.
|
61. |
Liu R, Li Z, Fan X, et al. Learning deformable image registration from optimization: Perspective, modules, bilevel training and beyond. IEEE Trans Pattern Anal Mach Intell, 2021. doi: 10.1109/TPAMI.2021.3115825.
|
62. |
Lei Y, Fu Y, Wang T, et al. 4D-CT deformable image registration using multiscale unsupervised deep learning. Phys Med Biol, 2020, 65(8): 085003. doi: 10.1088/1361-6560/ab79c4.
|