1. |
王莹莹, 郁惠敏, 刘蕾, 等. 含石墨烯仿生滑液对ZrO2陶瓷人工关节材料的润滑作用研究. 摩擦学学报, 2018, 38(3): 319-326.
|
2. |
Ranuša M, Čípek P, Vrbka M, et al. Tribological behaviour of 3D printed materials for small joint implants: A pilot study. J Mech Behav Biomed Mater, 2022, 132: 105274. doi: 10.1016/j.jmbbm.2022.105274.
|
3. |
Asri RIM, Harun WSW, Samykano M, et al. Corrosion and surface modification on biocompatible metals: A review. Mater Sci Eng C Mater Biol Appl, 2017, 77: 1261-1274.
|
4. |
Hatamleh MM, Wu X, Alnazzawi A, et al. Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments. Dent Mater, 2018, 34(4): 676-683.
|
5. |
梁风光. 含纳米颗粒的透明质酸溶液的制备及其对人工关节材料的润滑作用. 开封: 河南大学, 2018.
|
6. |
Richards L, Brown C, Stone MH, et al. Identification of nanometre-sized ultra-high molecular weight polyethylene wear particles in samples retrieved in vivo. J Bone Joint Surg (Br), 2008, 90(8): 1106-1113.
|
7. |
Saikko V, Vuorinen V, Revitzer H. Analysis of UHMWPE wear particles produced in the simulation of hip and knee wear mechanisms with the RandomPOD system. Biotribology, 2015, 12: 30-34.
|
8. |
Su CY, Chen CC, Huang YL, et al. Optimization of biomolecular additives for a reduction of friction in the artificial joint system. Tribology International, 2017, 111: 220-225.
|
9. |
Kang LJ, Yoon J, Rho JG, et al. Self-assembled hyaluronic acid nanoparticles for osteoarthritis treatment. Biomaterials, 2021, 275: 120967. doi: 10.1016/j.biomaterials.2021.120967.
|
10. |
Tiwari A, Karkhur Y, Maini L. Total hip replacement in tuberculosis of hip: A systematic review. J Clin Orthop Trauma, 2018, 9(1): 54-57.
|
11. |
Li XH, Cao Z, Zhang ZJ, et al. Surface-modification in situ of nano-SiO2 and its structure and tribological properties. Applied Surface Science, 2020, 252(22): 856-861.
|
12. |
Uflyand IE, Zhinzhilo VA, Burlakova VE. Metal-containing nanomaterials as lubricant additives: State-of-the-art and future development. Friction, 2019, 7(2): 93-116.
|
13. |
Hu C, Bai M, Lv J, et al. Molecular dynamics simulation of mechanism of nanoparticle in improving load-carrying capacity of lubricant film. Computational Materials Science, 2015, 109: 97-103.
|
14. |
阮春标, 胡经纬, 袁恒迪, 等. 可用于人工关节润滑的水凝胶蠕变缓释性能及理论模型. 西安交通大学报, 2022, 56(6): 97-103.
|
15. |
Mendes BB, Daly AC, Reis RL, et al. Injectable hyaluronic acid and platelet lysate-derived granular hydrogels for biomedical applications. Acta Biomater, 2021, 119: 101-113.
|
16. |
Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials, 2004, 25(26): 5681-5703.
|
17. |
张禾蓉, 易达, 孟子晖, 等. 基于纳米水凝胶颗粒的毛细管电泳法分离DNA. 分析化学, 2019, 47(5): 772-778.
|
18. |
Pilipenko IM, Korzhikov-Vlakh VA, Zakharova NV, et al. Thermo- and pH-sensitive glycosaminoglycans derivatives obtained by controlled grafting of poly (N-isopropylacrylamide). Carbohydr Polym, 2020, 248: 116764. doi: 10.1016/j.carbpol.2020.116764.
|
19. |
Li CY, Hao XP, Wu ZL, et al. Photolithographically patterned hydrogels with programmed deformations. Chem Asian J, 2019, 14(1): 94-104.
|