1. |
Schwab JH. Global sagittal alignment. Skeletal Radiology, 2017, (46): 1613-1614.
|
2. |
Duval-Beaupère G, Schmidt C, Cosson P. A Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng, 1992, 20(4): 451-462.
|
3. |
Diebo BG, Varghese JJ, Lafage R, et al. Sagittal alignment of the spine: What do you need to know? Clin Neurol Neurosurg, 2015, 139: 295-301.
|
4. |
Berven S, Wadhwa R. Sagittal alignment of the lumbar spine. Neurosurg Clin N Am, 2018, 29(3): 331-339.
|
5. |
Vrtovec T, Pernus F, Likar B. A review of methods for quantitative evaluation of spinal curvature. Eur Spine J, 2009, 18(5): 593-607.
|
6. |
Zhang J, Li H, Lv L, et al. Computer-aided Cobb measurement based on automatic detection of vertebral slopes using deep neural network. Int J Biomed Imaging, 2017, 2017: 9083916. doi: 10.1155/2017/9083916.
|
7. |
Smith JS, Shaffrey CI, Ames CP, et al. Treatment of adult thoracolumbar spinal deformity: past, present, and future. J Neurosurg Spine, 2019, 30(5): 551-567.
|
8. |
Lafage R, Ferrero E, Henry JK, et al. Validation of a new computer-assisted tool to measure spino-pelvic parameters. Spine J, 2015, 15(12): 2493-2502.
|
9. |
Sun H, Zhen X, Bailey C, et al. Direct estimation of spinal Cobb angles by structured multi-output regression//International Conference on Information Processing in Medical Imaging. Cham: Springer, 2017.
|
10. |
Langensiepen S, Semler O, Sobottke R, et al. Measuring procedures to determine the Cobb angle in idiopathic scoliosis: a systematic review. Eur Spine J, 2013, 22(11): 2360-2371.
|
11. |
Zhang J, Lou E, Le LH, et al. Automatic Cobb measurement of scoliosis based on fuzzy Hough Transform with vertebral shape prior. J Digit Imaging, 2009, 22(5): 463-472.
|
12. |
Alukaev D, Kiselev S, Mustafaev T, et al. A deep learning framework for vertebral morphometry and Cobb angle measurement with external validation. Eur Spine J, 2022, 31(8): 2115-2124.
|
13. |
Wang L, Xu Q, Leung S, et al. Accurate automated Cobb angles estimation using multi-view extrapolation net. Med Image Anal, 2019, 58: 101542. doi: 10.1016/j.media.2019.101542.
|
14. |
Fu X, Yang G, Zhang K, et al. An automated estimator for Cobb angel measurement using multi-task networks. Neural Computing and Applications, 2021, 33: 4755-4761.
|
15. |
Zhao Y, Zhang J, Li H, et al. Automatic Cobb angle measurement method based on vertebra segmentation by deep learning. Med Biol Eng Comput, 2022, 60(8): 2257-2269.
|
16. |
Sun Y, Xing Y, Zhao Z, et al. Comparison of manual versus automated measurement of Cobb angle in idiopathic scoliosis based on a deep learning keypoint detection technology. Eur Spine J, 2022, 31(8): 1969-1978.
|
17. |
Pan Y, Chen Q, Chen T, et al. Evaluation of a computer-aided method for measuring the Cobb angle on chest X-rays. Eur Spine J, 2019, 28(12): 3035-3043.
|
18. |
Liu J, Yuan C, Sun X, et al. The measurement of Cobb angle based on spine X-ray images using multi-scale convolutional neural network. Phys Eng Sci Med, 2021, 44(3): 809-821.
|
19. |
Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows//2021 IEEE/CVF International Conference on Computer Vision (ICCV). USA: IEEE, 2021.
|
20. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . USA: IEEE, 2016.
|
21. |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer, 2015.
|
22. |
Hu H, Gu J, Zhang Z, et al. Relation networks for object detection//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2018.
|
23. |
Hu H, Zhang Z, Xie Z, et al. Local relation networks for image recognition//2019 IEEE/CVF International Conference on Computer Vision (ICCV). USA: IEEE, 2019.
|
24. |
Papandreou G, Zhu T, Kanazawa N, et al. Towards accurate multi-person pose estimation in the wild//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). USA: IEEE, 2017.
|
25. |
Boden SD, Wiesel SW. Lumbosacral segmental motion in normal individuals. Have we been measuring instability properly? Spine (Phila Pa 1976), 1990, 15(6): 571-576.
|
26. |
Quinnell RC, Stockdale HR. Flexion and extension radiography of the lumbar spine: a comparison with lumbar discography. Clin Radiol, 1983, 34(4): 405-411.
|