1. |
Jin C, Lin BH, Zheng G, et al. CORM-3 attenuates oxidative stress-induced bone loss via the Nrf2/HO-1 pathway. Oxid Med Cell Longev, 2022, 2022: 5098358. doi: 10.1155/2022/5098358.
|
2. |
Liu HD, Ren MX, Li Y, et al. Melatonin alleviates hydrogen peroxide induced oxidative damage in MC3T3-E1 cells and promotes osteogenesis by activating SIRT1. Free Radic Res, 2022, 56(1): 63-76.
|
3. |
Kimball JS, Johnson JP, Carlson DA. Oxidative stress and osteoporosis. J Bone Joint Surg (Am), 2021, 103(15): 1451-1461.
|
4. |
Wang Y, Li X, Zhou S, et al. MCU inhibitor ruthenium red alleviates the osteoclastogenesis and ovariectomized osteoporosis via suppressing RANKL-induced ROS production and NFATc1 activation through P38 MAPK signaling pathway. Oxid Med Cell Longev, 2022, 2022: 7727006. doi: 10.1155/2022/7727006.
|
5. |
Li T, Jiang S, Lu C, et al. Melatonin: Another avenue for treating osteoporosis? J Pineal Res, 2019, 66(2): e12548.doi: 10.1111/jpi.12548.
|
6. |
Zhao F, Guo L, Wang X, et al. Correlation of oxidative stress-related biomarkers with postmenopausal osteoporosis: a systematic review and meta-analysis. Arch Osteoporos, 2021, 16(1): 4. doi: 10.1007/s11657-020-00854-w.
|
7. |
Waterhouse E. Intravenous valproate for pediatric status epilepticus. Epilepsy Curr, 2003, 3(6): 208-209.
|
8. |
Insinga A, Monestiroli S, Ronzoni S, et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med, 2005, 11(1): 71-76.
|
9. |
Lee HS, Wang SY, Salter DM, et al. The impact of the use of antiepileptic drugs on the growth of children. BMC Pediatr, 2013, 13: 211. doi: 10.1186/1471-2431-13-211.
|
10. |
Ji Y, Ke Y, Gao S. Intermittent activation of notch signaling promotes bone formation. Am J Transl Res, 2017, 9(6): 2933-2944.
|
11. |
Göttlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J, 2001, 20(24): 6969-6978.
|
12. |
Cho HH, Park HT, Kim YJ, et al. Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors. J Cell Biochem, 2005, 96(3): 533-542.
|
13. |
Zhou D, Chen YX, Yin JH, et al. Valproic acid prevents glucocorticoid-induced osteonecrosis of the femoral head of rats. Int J Mol Med, 2018, 41(6): 3433-3447.
|
14. |
Rocha S, Ferraz R, Prudêncio C, et al. Differential effects of antiepileptic drugs on human bone cells. J Cell Physiol, 2019, 234(11): 19691-19701.
|
15. |
Chen X, Wang H, Zhou M, et al. Valproic acid attenuates traumatic brain injury-induced inflammation in vivo: Involvement of autophagy and the Nrf2/ARE signaling pathway. Front Mol Neurosci, 2018, 11: 117. doi: 10.3389/fnmol.2018.00117.
|
16. |
胡孝丽, 王佳宇, 余和东, 等. 大鼠胎鼠成骨细胞的培养及初步鉴定. 临床口腔医学杂志, 2016, 32(4): 207-210.
|
17. |
Yang TL, Shen H, Liu A, et al. A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol, 2020, 16(2): 91-103.
|
18. |
Soutar MPM, Kempthorne L, Annuario E, et al. FBS/BSA media concentration determines CCCP’s ability to depolarize mitochondria and activate PINK1-PRKN mitophagy. Autophagy, 2019, 15(11): 2002-2011.
|
19. |
Zhang W, Gao R, Rong X, et al. Immunoporosis: Role of immune system in the pathophysiology of different types of osteoporosis. Front Endocrinol (Lausanne), 2022, 13: 965258. doi: 10.3389/fendo.2022.965258.
|
20. |
He L, He T, Farrar S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem, 2017, 44(2): 532-553.
|
21. |
Lundgren CAK, Sjöstrand D, Biner O, et al. Scavenging of superoxide by a membrane-bound superoxide oxidase. Nat Chem Biol, 2018, 14(8): 788-793.
|
22. |
Yang Y, Sun Y, Mao WW, et al. Oxidative stress induces downregulation of TP53INP2 and suppresses osteogenic differentiation of BMSCs during osteoporosis through the autophagy degradation pathway. Free Radic Biol Med, 2021, 166: 226-237.
|
23. |
Li Y, Zhang R, Ren M, et al. Experimental study on the effects of simvastatin in reversing the femoral metaphyseal defects induced by sodium valproate in normal and ovariectomized rats. Heliyon, 2022, 8(9): e10480. doi: 10.1016/j.heliyon.2022.e10480.
|
24. |
Kopacz A, Rojo AI, Patibandla C, et al. Overlooked and valuable facts to know in the NRF2/KEAP1 field. Free Radic Biol Med, 2022, 192: 37-49.
|
25. |
Mishra MK, Kukal S, Paul PR, et al. Insights into structural modifications of valproic acid and their pharmacological profile. Molecules, 2021, 27(1): 104. doi: 10.3390/molecules27010104.
|