• Department of Orthopaedics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou Fujian, 362000, P. R. China;
WANG Wenhuai, Email: xiaodi50a@163.com
Export PDF Favorites Scan Get Citation

Objective  To investigate the regulatory effects of miR-26a-5p on the osteogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) by regulating cAMP response element binding protein 1 (CREB1). Methods  The adipose tissues of four 3-4 weeks old female C57BL/6 mice were collected and the cells were isolated and cultured by digestion separation method. After morphological observation and identification by flow cytometry, the 3rd-generation cells were subjected to osteogenic differentiation induction. At 0, 3, 7, and 14 days after osteogenic differentiation induction, the calcium deposition was observed by alizarin red staining, ALP activity was detected, miR- 26a-5p and CREB1 mRNA expressions were examined by real-time fluorescence quantitative PCR, and CREB1 protein and its phosphorylation (phospho-CREB1, p-CREB1) level were measured by Western blot. After the binding sites between miR-26a-5p and CREB1 was predicted by the starBase database, HEK-293T cells were used to conduct a dual-luciferase reporter gene experiment to verify the targeting relationship (represented as luciferase activity after 48 hours of culture). Finally, miR-26a-p inhibitor (experimental group) and the corresponding negative control (control group) were transfected into ADSCs. Alizarin red staining, ALP activity, real-time fluorescent quantitative PCR (miR-26a-5p) and Western blot [CREB1, p-CREB1, Runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN)] were performed at 7 and 14 days after osteogenic induction culture. Results  The cultured cells were identified as ADSCs. With the prolongation of osteogenic induction culture, the number of calcified nodules and ALP activity significantly increased (P<0.05). The relative expression of miR-26a-5p in the cells gradually decreased, while the relative expressions of CREB1 mRNA and protein, as well as the relative expression of p-CREB1 protein were increased. The differences were significant between 7, 14 days and 0 day (P<0.05). There was no significant difference in p-CREB1/CREB1 between different time points (P>0.05). The starBase database predicted that miR-26a-5p and CREB1 had targeted binding sequences, and the dual-luciferase reporter gene experiment revealed that overexpression of miR-26a-5p significantly suppressed CREB1 wild-type luciferase activity (P<0.05). After 7 and 14 days of osteogenic induction, compared with the control group, the number of calcified nodules, ALP activity, and relative expressions of CREB1, p-CREB1, OCN, and RUNX2 proteins in the experimental group significantly increased (P<0.05). There was no significant difference in p-CREB1/CREB1 between the two groups (P>0.05). Conclusion  Knocking down miR-26a-5p promoted the osteogenic differentiation of ADSCs by up-regulating CREB1 and its phosphorylation.

Citation: LIN Sanfu, CHEN Shoubo, FANG Kaibin, SHI Jinnan, WU Wenhua, WANG Wenhuai. Mechanism of miR-26a-5p/cAMP response element binding protein 1 molecular axis regulating osteogenic differentiation of adipose-derived mesenchymal stem cells. Chinese Journal of Reparative and Reconstructive Surgery, 2023, 37(5): 615-621. doi: 10.7507/1002-1892.202211037 Copy