1. |
He C, Wong MS. Spinal flexibility assessment on the patients with adolescent idiopathic scoliosis: A literature review. Spine (Phila Pa 1976), 2018, 43(4): E250-E258.
|
2. |
Kawasaki S, Shigematsu H, Tanaka M, et al. Segmental flexibility in adolescent idiopathic scoliosis assessed using the fulcrum-bending radiography method. Clin Spine Surg, 2020, 33(8): E376-E380.
|
3. |
Te Hennepe N, Spruit M, Pouw MH, et al. Supine traction versus prone bending radiographs for assessing the curve flexibility in spinal deformity. Global Spine J, 2022, 12(7): 1345-1351.
|
4. |
Swany LM, Larson AN, Buyuk AF, et al. Comparison of slot-scanning standing, supine, and fulcrum radiographs for assessment of curve flexibility in adolescent idiopathic scoliosis: a pilot study. Spine Deform, 2021, 9(5): 1355-1362.
|
5. |
Cheung JPY, Cheung PWH. Supine flexibility predicts curve progression for patients with adolescent idiopathic scoliosis undergoing underarm bracing. Bone Joint J, 2020, 102-B(2): 254-260.
|
6. |
Bekki H, Harimaya K, Matsumoto Y, et al. Which side-bending X-ray position is better to evaluate the preoperative curve flexibility in adolescent idiopathic scoliosis patients, supine or prone? Asian Spine J, 2018, 12(4): 632-638.
|
7. |
Li QD, Yang JS, He BR, et al. Risk factors for proximal junctional kyphosis after posterior long-segment internal fixation for chronic symptomatic osteoporotic thoracolumbar fractures with kyphosis. BMC Surg, 2022, 22(1): 189. doi: 10.1186/s12893-022-01598-9.
|
8. |
Decker S, Mayer M, Hempfing A, et al. Flexibility of thoracic kyphosis affects postoperative sagittal alignment in adult patients with spinal deformity. Eur Spine J, 2020, 29(4): 813-820.
|
9. |
Lovecchio F, Lafage R, Elysee JC, et al. The utility of supine radiographs in the assessment of thoracic flexibility and risk of proximal junctional kyphosis. J Neurosurg Spine, 2021. doi: 10.3171/2020.11.SPINE201565.
|
10. |
Debnath UK, Quraishi NA, McCarthy MJH, et al. Long-term outcome after surgical treatment of Scheuermann’s Kyphosis (SK). Spine Deform, 2022, 10(2): 387-397.
|
11. |
Park JH, Kim YB, Hyun SJ, et al. Changes in thoracic kyphosis and thoracolumbar kyphosis in asymptomatic Korean male subjects aged >50 years: Do they progress above T5, T10, T12, or L2? Asian Spine J, 2020, 14(2): 192-197.
|
12. |
秦杰, 苏保, 王霖邦, 等. 经椎弓根下椎体椎间隙截骨术治疗陈旧性骨质疏松性椎体压缩骨折继发胸腰段后凸畸形. 中国修复重建外科杂志, 2022, 36(3): 305-309.
|
13. |
Prost S, Pesenti S, Fuentes S, et al. Treatment of osteoporotic vertebral fractures. Orthop Traumatol Surg Res, 2021, 107(1S): 102779. doi: 10.1016/j.otsr.2020.102779.
|
14. |
Ma Z, Jiao J, Yang D, et al. Posterior vertebral column resection combined with bone cement augmentation of pedicle screw fixation for treatment of severe vertebral compression fractures with kyphotic deformity: A retrospective case series. Clin Spine Surg, 2020, 33(6): E269-E275.
|
15. |
徐文强, 于海洋, 梁成民, 等. 后路经椎间隙松解打压植骨后柱加压闭合矫形术治疗骨质疏松性脊柱骨折伴中重度后凸畸形. 中国修复重建外科杂志, 2019, 33(11): 1406-1413.
|
16. |
Parreira PCS, Maher CG, Megale RZ, et al. An overview of clinical guidelines for the management of vertebral compression fracture: a systematic review. Spine J, 2017, 17(12): 1932-1938.
|
17. |
Lee GW, Shin H, Chang MC. Deep learning algorithm to evaluate cervical spondylotic myelopathy using lateral cervical spine radiograph. BMC Neurol, 2022, 22(1): 147. doi: 10.1186/s12883-022-02670-w.
|
18. |
Machino M, Nakashima H, Ito K, et al. Age-related degenerative changes and sex-specific differences in osseous anatomy and intervertebral disc height of the thoracolumbar spine. J Clin Neurosci, 2021, 90: 317-324.
|
19. |
Zhou Q, Sun X, Qiu Y, et al. Utility of the decubitus or the supine rather than the extension lateral radiograph in evaluating lumbar segmental instability. Eur Spine J, 2022, 31(4): 851-857.
|
20. |
Putto E, Tallroth K. Extension-flexion radiographs for motion studies of the lumbar spine. A comparison of two methods. Spine (Phila Pa 1976), 1990, 15(2): 107-110.
|
21. |
Ang B, Lafage R, Elysée JC, et al. In the relationship between change in kyphosis and change in lordosis: Which drives which? Global Spine J, 2021, 11(4): 541-548.
|
22. |
Saad E, Semaan K, Kawkabani G, et al. Alteration of the sitting and standing movement in adult spinal deformity. Front Bioeng Biotechnol, 2022, 9: 751193. doi: 10.3389/fbioe.2021.751193.
|
23. |
Schwab F, Blondel B, Chay E, et al. The comprehensive anatomical spinal osteotomy classification. Neurosurgery, 2014, 74(1): 112-120.
|
24. |
Hultman KL, Vaidya R, Malkawi I, et al. Accuracy of low dose computed tomography scanogram for measurement of femoral version after locked intramedullary nailing. Int Orthop, 2016, 40(9): 1955-1960.
|
25. |
Weisz GM, Albury WR, Houang MD, et al. Scanogram for sagittal imbalance of the spine: low dose alternative for a safer diagnosis. Curr Rheumatol Rev, 2014, 10(1): 35-37.
|
26. |
Wu J, Wei F, Ma L, et al. Accuracy and reliability of standing lateral lumbar radiographs for measurements of spinopelvic parameters. Spine (Phila Pa 1976), 2021, 46(15): 1033-1038.
|
27. |
Iwahashi S, Hashida R, Matsuse H, et al. The impact of sarcopenia on low back pain and quality of life in patients with osteoporosis. BMC Musculoskelet Disord, 2022, 23(1): 142. doi: 10.1186/s12891-022-05086-2.
|
28. |
Ohba T, Koji F, Koyama K, et al. Preoperative radiographic evaluation of thoracic flexibility and compensation for adult spinal deformity surgery. How to select optimal upper instrumented vertebra to prevent proximal junctional kyphosis. Spine (Phila Pa 1976), 2022, 47(2): 144-152.
|
29. |
李庆达, 贺宝荣, 杨俊松, 等. 老年陈旧性症状性骨质疏松性胸腰椎骨折后路长节段内固定术后近端交界性后凸的危险因素. 中华创伤杂志, 2022, 38(2): 101-108.
|