1. |
Burkhead WZ Jr, Rockwood CA Jr. Treatment of instability of the shoulder with an exercise program. J Bone Joint Surg (Am), 1992, 74(6): 890-896.
|
2. |
Dickens JF, Slaven SE, Cameron KL, et al. Prospective evaluation of glenoid bone loss after first-time and recurrent anterior glenohumeral instability events. Am J Sports Med, 2019, 47(5): 1082-1089.
|
3. |
Boileau P, Villalba M, Héry JY, et al. Risk factors for recurrence of shoulder instability after arthroscopic Bankart repair. J Bone Joint Surg (Am), 2006, 88(8): 1755-1763.
|
4. |
Itoi E, Lee SB, Berglund LJ, et al. The effect of a glenoid defect on anteroinferior stability of the shoulder after Bankart repair: a cadaveric study. J Bone Joint Surg (Am), 2000, 82(1): 35-46.
|
5. |
Wermers J, Schliemann B, Raschke MJ, et al. Glenoid concavity has a higher impact on shoulder stability than the size of a bony defect. Knee Surg Sports Traumatol Arthrosc, 2021, 29(8): 2631-2639.
|
6. |
Min KS, Sy JW, Mannino BJ. Area measurement percentile of 3-dimensional computed tomography has the highest interobserver reliability when measuring anterior glenoid bone loss. Arthroscopy, 2023, S0749-8063(23)00018-X. doi: 10.1016/j.arthro.2022.12.035.
|
7. |
Zappia M, Albano D, Aliprandi A, et al. Glenoid bone loss in anterior shoulder dislocation: a multicentric study to assess the most reliable imaging method. Radiol Med, 2023, 128(1): 93-102.
|
8. |
潘正烽, 黄富国, 李箭, 等. 肩关节前向不稳中骨缺损诊断技术及评估方法的研究进展. 中国修复重建外科杂志, 2019, 33(6): 762-767.
|
9. |
Rayes J, Xu J, Sparavalo S, et al. Calculating glenoid bone loss based on glenoid height using ipsilateral three-dimensional computed tomography. Knee Surg Sports Traumatol Arthrosc, 2023, 31(1): 169-176.
|
10. |
Vopat ML, Hermanns CA, Midtgaard KS, et al. Imaging modalities for the glenoid track in recurrent shoulder instability: a systematic review. Orthop J Sports Med, 2021, 9(6): 23259671211006750. doi: 10.1177/23259671211006750.
|
11. |
Martin CJ, Barnard M. Potential risks of cardiovascular and cerebrovascular disease and cancer due to cumulative doses received from diagnostic CT scans? J Radiol Prot, 2021, 41(4). doi: 10.1088/1361-6498/ac270f.
|
12. |
Ver Berne J, Politis C, Shaheen E, et al. Cumulative exposure and lifetime cancer risk from diagnostic radiation in patients undergoing orthognathic surgery: a cross-sectional analysis. Int J Oral Maxillofac Surg, 2023, S0901-5027(23)00025-5. doi: 10.1016/j.ijom.2023.02.001.
|
13. |
Cao CF, Ma KL, Shan H, et al. CT Scans and cancer risks: a systematic review and dose-response meta-analysis. BMC Cancer, 2022, 22(1): 1238. doi: 10.1186/s12885-022-10310-2.
|
14. |
Lee RK, Griffith JF, Tong MM, et al. Glenoid bone loss: assessment with MR imaging. Radiology, 2013, 267(2): 496-502.
|
15. |
Florkow MC, Willemsen K, Mascarenhas VV, et al. Magnetic resonance imaging versus computed tomography for three-dimensional bone imaging of musculoskeletal pathologies: a review. J Magn Reson Imaging, 2022, 56(1): 11-34.
|
16. |
Sgroi M, Huzurudin H, Ludwig M, et al. MRI allows accurate measurement of glenoid bone loss. Clin Orthop Relat Res, 2022, 480(9): 1731-1742.
|
17. |
Yan K, Xi Y, Sasiponganan C, et al. Does 3DMR provide equivalent information as 3DCT for the pre-operative evaluation of adult hip pain conditions of femoroacetabular impingement and hip dysplasia? Br J Radiol, 2018, 91(1092): 20180474. doi: 10.1259/bjr.20180474.
|
18. |
Kralik SF, Supakul N, Wu IC, et al. Black bone MRI with 3D reconstruction for the detection of skull fractures in children with suspected abusive head trauma. Neuroradiology, 2019, 61(1): 81-87.
|
19. |
Eismann EA, Laor T, Cornwall R. Three-dimensional magnetic resonance imaging of glenohumeral dysplasia in neonatal brachial plexus palsy. J Bone Joint Surg (Am), 2016, 98(2): 142-151.
|
20. |
Sugaya H, Moriishi J, Dohi M, et al. Glenoid rim morphology in recurrent anterior glenohumeral instability. J Bone Joint Surg (Am), 2003, 85(5): 878-884.
|
21. |
Gyftopoulos S, Hasan S, Bencardino J, et al. Diagnostic accuracy of MRI in the measurement of glenoid bone loss. AJR Am J Roentgenol, 2012, 199(4): 873-878.
|
22. |
Kwon YW, Powell KA, Yum JK, et al. Use of three-dimensional computed tomography for the analysis of the glenoid anatomy. J Shoulder Elbow Surg, 2005, 14(1): 85-90.
|
23. |
Arenas-Miquelez A, Dabirrahmani D, Sharma G, et al. What is the most reliable method of measuring glenoid bone loss in anterior glenohumeral instability? A cadaveric study comparing different measurement techniques for glenoid bone loss. Am J Sports Med, 2021, 49(13): 3628-3637.
|
24. |
Heckelman LN, Soher BJ, Spritzer CE, et al. Design and validation of a semi-automatic bone segmentation algorithm from MRI to improve research efficiency. Sci Rep, 2022, 12(1): 7825. doi: 10.1038/s41598-022-11785-6.
|
25. |
Davico G, Bottin F, Di Martino A, et al. Intra-operator repeatability of manual segmentations of the hip muscles on clinical magnetic resonance images. J Digit Imaging, 2023, 36(1): 143-152.
|
26. |
Lacheta L, Herbst E, Voss A, et al. Insufficient consensus regarding circle size and bone loss width using the ratio-“best fit circle”-method even with three-dimensional computed tomography. Knee Surg Sports Traumatol Arthrosc, 2019, 27(10): 3222-3229.
|
27. |
Do WS, Kim JH, Lim JR, et al. Disagreement between the accepted best-fit circle method to calculate bone loss between injured and uninjured shoulders. Am J Sports Med, 2023. doi: 10.1177/03635465221149743.
|
28. |
Moroder P, Plachel F, Huettner A, et al. The effect of scapula tilt and best-fit circle placement when measuring glenoid bone loss in shoulder instability patients. Arthroscopy, 2018, 34(2): 398-404.
|
29. |
Ma Y, Jang H, Jerban S, et al. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. Appl Phys Rev, 2022, 9(4): 041303. doi: 10.1063/5.0086459.
|