1. |
Xu X, Li N, Wu Y, et al. Zhuifeng tougu capsules inhibit the TLR4/MyD88/NF-κB signaling pathway and alleviate knee osteoarthritis: In vitro and in vivo experiments. Front Pharmacol, 2022, 13: 951860. doi: 10.3389/fphar.2022.951860.
|
2. |
Zhou J, Liu C, Sun Y, et al. Genetically predicted circulating levels of copper and zinc are associated with osteoarthritis but not with rheumatoid arthritis. Osteoarthritis Cartilage, 2021, 29(7): 1029-1035.
|
3. |
赵冬妮, 白玉, 梅轶芳, 等. 微量元素对骨关节炎影响的研究进展. 中国实用内科杂志, 2019, 39(11): 991-993.
|
4. |
Zhang S, Sun L, Zhang J, et al. Adverse impact of heavy metals on bone cells and bone metabolism dependently and independently through anemia. Adv Sci (Weinh), 2020, 7(19): 2000383. doi: 10.1002/advs.202000383.
|
5. |
中华医学会骨科学分会关节外科学组. 骨关节炎诊疗指南 (2018年版). 中华骨科杂志, 2018, 38(12): 705-715.
|
6. |
Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum Dis, 1957, 16(4): 494-502.
|
7. |
曾凡, 陈柏屹, 王康, 等. 加味独活寄生合剂对膝骨关节炎模型兔膝关节软骨组织细胞自噬及凋亡相关蛋白的影响. 中医杂志, 2022, 63(8): 773-780.
|
8. |
牟利民, 张文豪, 张思平, 等. 绝经后女性退变性膝骨关节炎疼痛与性激素水平及关节液炎性因子的相关性研究. 中国全科医学, 2022, 25(29): 3652-3657.
|
9. |
王海英, 丁晓, 杨立, 等. 不同分期骨关节炎关节液中相关降解酶的表达差异. 中国组织工程研究, 2019, 23(23): 3609-3615.
|
10. |
李国勇. 相关因素与膝关节骨关节炎结构中微量元素含量的关系及微量元素之间相关性研究. 南昌: 南昌大学, 2022.
|
11. |
Mazarakioti EC, Zotos A, Thomatou AA, et al. Inductively coupled plasma-mass spectrometry (ICP-MS), a useful tool in authenticity of agricultural products’ and foods’ origin. Foods, 2022, 11(22): 3705. doi: 10.3390/foods11223705.
|
12. |
Zhao T, Chen T, Qiu Y, et al. Trace element profiling using inductively coupled plasma mass spectrometry and its application in an osteoarthritis study. Anal Chem, 2009, 81(9): 3683-3692.
|
13. |
李博, 胡如印, 孙立, 等. 膝关节液微量元素含量与骨性关节炎关节镜下Outerbridge分级关系的研究. 中国矫形外科杂志, 2016, 24(3): 265-269.
|
14. |
薛志超, 常祺, 朱履刚, 等. 膝关节液微量元素浓度对骨性关节炎患者病情程度的评估价值分析. 四川解剖学杂志, 2020, 28(3): 165-166.
|
15. |
Roczniak W, Brodziak-Dopierała B, Cipora E, et al. Factors that affect the content of cadmium, nickel, copper and zinc in tissues of the knee joint. Biol Trace Elem Res, 2017, 178(2): 201-209.
|
16. |
Yazar M, Sarban S, Kocyigit A, et al. Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. Biol Trace Elem Res, 2005, 106(2): 123-132.
|
17. |
Zhang X, Wang Q, Wu J, et al. Crystal structure of human lysyl oxidase-like 2 (hLOXL2) in a precursor state. Proc Natl Acad Sci U S A, 2018, 115(15): 3828-3833.
|
18. |
Suska F, Esposito M, Gretzer C, et al. IL-1alpha, IL-1beta and TNF-alpha secretion during in vivo/ex vivo cellular interactions with titanium and copper. Biomaterials, 2003, 24(3): 461-468.
|
19. |
Huang CC, Chiou CH, Liu SC, et al. Melatonin attenuates TNF-α and IL-1β expression in synovial fibroblasts and diminishes cartilage degradation: Implications for the treatment of rheumatoid arthritis. J Pineal Res, 2019, 66(3): e12560. doi: 10.1111/jpi.12560.
|
20. |
Na HS, Park JS, Cho KH, et al. Interleukin-1-interleukin-17 signaling axis induces cartilage destruction and promotes experimental osteoarthritis. Front Immunol, 2020, 11: 730. doi: 10.3389/fimmu.2020.00730.
|
21. |
Guan T, Wu Z, Xu C, et al. The association of trace elements with arthritis in US adults: NHANES 2013-2016. J Trace Elem Med Biol, 2023, 76: 127122. doi: 10.1016/j.jtemb.2022.127122.
|
22. |
Huang L, Li P, Guo L, et al. Zinc finger protein 521 attenuates osteoarthritis via the histone deacetylases 4 in the nucleus. Bioengineered, 2022, 13(6): 14489-14502.
|
23. |
Zhou T, Ran J, Xu P, et al. A hyaluronic acid/platelet-rich plasma hydrogel containing MnO2 nanozymes efficiently alleviates osteoarthritis in vivo. Carbohydr Polym, 2022, 292: 119667. doi: 10.1016/j.carbpol.2022.119667.
|
24. |
Chen L, Tiwari SR, Zhang Y, et al. Facile synthesis of hollow MnO2 nanoparticles for reactive oxygen species scavenging in osteoarthritis. ACS Biomater Sci Eng, 2021, 7(4): 1686-1692.
|
25. |
Li G, Cheng T, Yu X. The impact of trace elements on osteoarthritis. Front Med (Lausanne), 2021, 8: 771297. doi: 10.3389/fmed.2021.771297.
|