1. |
Evans DR, Lazarides AL, Visgauss JD, et al. Limb salvage versus amputation in patients with osteosarcoma of the extremities: an update in the modern era using the National Cancer Database. BMC Cancer, 2020, 20(1): 995.
|
2. |
Fuchs B, Ossendorf C, Leerapun T, et al. Intercalary segmental reconstruction after bone tumor resection. Eur J Surg Oncol, 2008, 34(12): 1271-1276.
|
3. |
Panagopoulos GN, Mavrogenis AF, Mauffrey C, et al. Intercalary reconstructions after bone tumor resections: a review of treatments. Eur J Orthop Surg Traumatol, 2017, 27(6): 737-746.
|
4. |
Errani C, Tsukamoto S, Almunhaisen N, et al. Intercalary reconstruction following resection of diaphyseal bone tumors: A systematic review. J Clin Orthop Trauma, 2021, 19: 1-10.
|
5. |
Friedrich JB, Moran SL, Bishop AT, et al. Free vascularized fibular graft salvage of complications of long-bone allograft after tumor reconstruction. J Bone Joint Surg (Am), 2008, 90(1): 93-100.
|
6. |
Smolle MA, Andreou D, Tunn PU, et al. Advances in tumour endoprostheses: a systematic review. EFORT Open Rev, 2019, 4(7): 445-459.
|
7. |
Moon BS, Gilbert NF, Cannon CP, et al. Distal femur allograft prosthetic composite reconstruction for short proximal femur segments following tumor resection. Adv Orthop, 2013, 2013: 397456.
|
8. |
Abrams GD, Gajendran VK, Mohler DG, et al. Surgical technique: Methods for removing a compress® compliant prestress implant. Clin Orthop Relat Res, 2012, 470(4): 1204-1212.
|
9. |
Zimel MN, Farfalli GL, Zindman AM, et al. Revision distal femoral arthroplasty with the compress® prosthesis has a low rate of mechanical failure at 10 years. Clin Orthop Relat Res, 2016, 474(2): 528-536.
|
10. |
He Z, Huang S, Ji T, et al. Plate configuration for biological reconstructions of femoral intercalary defect-a finite element evaluation. Comput Methods Programs Biomed, 2022, 224: 107006.
|
11. |
Sanders PTJ, Spierings JF, Albergo JI, et al. Long-term clinical outcomes of intercalary allograft reconstruction for lower-extremity bone tumors. J Bone Joint Surg (Am), 2020, 102(12): 1042-1049.
|
12. |
Stevenson JD, Wigley C, Burton H, et al. Minimising aseptic loosening in extreme bone resections: custom-made tumour endoprostheses with short medullary stems and extra-cortical plates. Bone Joint J, 2017, 99-B(12): 1689-1695.
|
13. |
Zhang HR, Zhang JY, Yang XG, et al. The effects of length of femoral stem on aseptic loosening following cemented distal femoral endoprosthetic replacement in tumour surgery. Int Orthop, 2020, 44(7): 1427-1433.
|
14. |
Batta V, Coathup MJ, Parratt MT, et al. Uncemented, custom-made, hydroxyapatite-coated collared distal femoral endoprostheses: up to 18 years’ follow-up. Bone Joint J, 2014, 96-B(2): 263-269.
|
15. |
Unwin PS, Cannon SR, Grimer RJ, et al. Aseptic loosening in cemented custom-made prosthetic replacements for bone tumours of the lower limb. J Bone Joint Surg (Br), 1996, 78-B(1): 5-13.
|
16. |
Bhangu AA, Kramer MJ, Geimer RJ, et al. Early distal femoral endoprosthetic survival: cemented stems versus the Compress® implant. Int Orthop, 2006, 30(6): 465-472.
|
17. |
Kramer MJ, Tanner BJ, Horvai AE, et al. Compressive osseointegration promotes viable bone at the endoprosthetic interface: retrieval study of Compress implants. Int Orthop, 2008, 32(5): 567-571.
|
18. |
Pedtke AC, Wustrack RL, Fang AS, et al. Aseptic failure: how does the Compress(®) implant compare to cemented stems? Clin Orthop Relat Res, 2012, 470(3): 735-742.
|
19. |
Dieckmann R, Henrichs MP, Gosheger G, et al. Short-stem reconstruction for megaendoprostheses in case of an ultrashort proximal femur. BMC Musculoskelet Disord, 2014, 15: 190.
|
20. |
Torres-Sanchez C, Al Mushref FRA, Norrito M, et al. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Mater Sci Eng C Mater Biol Appl, 2017, 77: 219-228.
|
21. |
中国医师协会骨科医师分会骨肿瘤专业委员会, 郭卫, 牛晓辉, 等. 骨肉瘤临床循证诊疗指南. 中华骨与关节外科杂志, 2018, 11(4): 288-301.
|
22. |
Medellin MR, Fujiwara T, Clark R, et al. Mechanisms of failure and survival of total femoral endoprosthetic replacements. Bone Joint J, 2019, 101-B(5): 522-528.
|
23. |
Min L, Peng J, Duan H, et al. Uncemented allograft-prosthetic composite reconstruction of the proximal femur. Indian J Orthop, 2014, 48(3): 289-295.
|
24. |
Gautam D, Malhotra R. Megaprosthesis versus allograft prosthesis composite for massive skeletal defects. J Clin Orthop Trauma, 2018, 9(1): 63-80.
|
25. |
Goldman LH, Morse LJ, O’Donnell RJ, et al. How often does spindle failure occur in compressive osseointegration endoprostheses for oncologic reconstruction? Clin Orthop Relat Res, 2016, 474(7): 1714-1723.
|
26. |
Calvert GT, Cummings JE, Bowles AJ, et al. A dual-center review of compressive osseointegration for fixation of massive endoprosthetics: 2- to 9-year followup. Clin Orthop Relat Res, 2014, 472(3): 822-829.
|
27. |
Lu M, Wang J, Xiao C, et al. Uncemented, curved, short endoprosthesis stem for distal femoral reconstruction: early follow-up outcomes. World J Surg Oncol, 2018, 16(1): 183.
|
28. |
Zhang Y, Wang P, Jin J, et al. In silico and in vivo studies of the effect of surface curvature on the osteoconduction of porous scaffolds. Biotechnol Bioeng, 2022, 119(2): 591-604.
|
29. |
Zhou JQ, Chang SM. Failure of PFNA: helical blade perforation and tip-apex distance. Injury, 2012, 43(7): 1227-1228.
|
30. |
Baumgaertner MR, Curtin SL, Lindskog DM, et al. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg (Am), 1995, 77(7): 1058-1064.
|
31. |
Jeys LM, Grimer RJ, Carter SR, et al. Periprosthetic infection in patients treated for an orthopaedic oncological condition. J Bone Joint Surg (Am), 2005, 87(4): 842-849.
|