1. |
宋达疆, 李赞, 章一新, 等. 胸背血管前锯肌支在胸壁缺损修复中的应用. 中国修复重建外科杂志, 2022, 36(8): 1021-1025.
|
2. |
李艾元, 施心雨, 岳万福. 丝素支架在肌肉骨骼组织工程的应用及研究进展. 丝绸, 2021, 58(11): 18-22.
|
3. |
Zhe M, Wu X, Yu P, et al. Recent advances in decellularized extracellular matrix-based bioinks for 3D gioprinting in tissue engineering. Materials (Basel, Switzerland), 2023, 16(8): 3197.
|
4. |
Philips C, Terrie L, Thorrez L. Decellularized skeletal muscle: A versatile biomaterial in tissue engineering and regenerative medicine. Biomaterials, 2022, 283: 121436.
|
5. |
邓斌斌, 邓雪强, 刘帅刚, 等. 关节镜下肱二头肌长头肌腱转位治疗不可修复巨大肩袖撕裂的研究进展. 中国修复重建外科杂志, 2022, 36(2): 249-253.
|
6. |
李艾元, 施心雨, 刘梦斐, 等. 基于丝素蛋白的可注射水凝胶在肌肉再生工程的应用. 丝绸, 2023, 60(2): 42-48.
|
7. |
Davoudi S, Chin CY, Cooke MJ, et al. Muscle stem cell intramuscular delivery within hyaluronan methylcellulose improves engraftment efficiency and dispersion. Biomaterials, 2018, 173: 34-46.
|
8. |
Abaci A, Guvendiren M. Designing decellularized extracellular matrix-based bioinks for 3D bioprinting. Advanced healthcare materials, 2020, 9(24): e2000734.
|
9. |
Wang YH, Wang DR, Guo YC, et al. The application of bone marrow mesenchymal stem cells and biomaterials in skeletal muscle regeneration. Regenerative therapy, 2020, 15: 285-294.
|
10. |
Alarcin E, Bal-Öztürk A, Avci H, et al. Current strategies for the regeneration of skeletal muscle tissue. Int J Mol Sci, 2021, 22(11): 5929.
|
11. |
Qazi TH, Mooney DJ, Pumberger M, et al. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials, 2015, 53: 502-521.
|
12. |
Hosoyama K, Ahumada M, Goel K, et al. Electroconductive materials as biomimetic platforms for tissue regeneration. Biotechnology advances, 2019, 37(3): 444-458.
|
13. |
Mostafavi E, Medina-Cruz D, Kalantari K, et al. Electroconductive nanobiomaterials for tissue engineering and regenerative medicine. Bioelectricity, 2020, 2(2): 120-149.
|
14. |
Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells, 2020, 9(9): 1970.
|
15. |
Smith LR, Kok HJ, Zhang B, et al. Matrix metalloproteinase 13 from satellite cells is required for efficient muscle growth and regeneration. Cell Physiol Biochem, 2020, 54(3): 333-353.
|
16. |
Nuge T, Liu Z, Liu X, et al. Recent advances in scaffolding from natural-based polymers for volumetric muscle injury. Molecules (Basel, Switzerland), 2021, 26(3): 699.
|
17. |
Langridge B, Griffin M, Butler PE. Regenerative medicine for skeletal muscle loss: a review of current tissue engineering approaches. J Mater Scie Mater Med, 2021, 32(1): 15.
|
18. |
Carnes ME, Pins GD. Skeletal muscle tissue engineering: Biomaterials-based strategies for the treatment of volumetric muscle loss. Bioengineering (Basel, Switzerland), 2020, 7(3): 85.
|
19. |
李丹丹, 莫秀梅. 基于席夫碱反应的氧化葡聚糖/胺化羧甲基壳聚糖双组分水凝胶粘合剂. 中国组织工程研究, 2018, 22(22): 6.
|
20. |
Xu Y, Wang Z, Hua Y, et al. Photocrosslinked natural hydrogel composed of hyaluronic acid and gelatin enhances cartilage regeneration of decellularized trachea matrix. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111628.
|
21. |
Yu T, Hu Y, He W, et al. An injectable and self-healing hydrogel with dual physical crosslinking for in-situ bone formation. Mat Today Bio, 2023, 19: 100558.
|
22. |
Urciuolo A, Urbani L, Perin S, et al. Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration. Scientific reports, 2018, 8(1): 8398.
|
23. |
李昱辉, 黄国友, 徐峰, 等. 基于水凝胶的细胞力学微环境构建及在肌肉组织再生中的应用. 十二届全国生物力学学术会议暨第十四届全国生物流变学学术会议会议论文摘要汇编, 2018.
|