1. |
Zhang B, Zhu J, Su H. Toward the third generation artificial intelligence. Science China Information Sciences, 2023, 66(2): 1-19.
|
2. |
谷向民, 李志辉, 何忠杰, 等. 白金十分钟自救互救实践创新展现新时代人文精神价值. 军民两用技术与产品, 2021(9): 68-72.
|
3. |
Murphy M, McCloughen A, Curtis K. The impact of simulated multidisciplinary Trauma Team Training on team performance: A qualitative study. Australasian Emergency Care, 2019, 22(1): 1-7.
|
4. |
Jin Q, Lin R, Yang F. BroadGAN: Generative adversarial networks of discriminating separate features based on broad learning. Engineering Applications of Artificial Intelligence, 2022, 109: 1-10.
|
5. |
Fei N, Lu Z, Gao Y, et al. Towards artificial general intelligence via a multimodal foundation model. Nature Communications, 2022, 13(1): 1-13.
|
6. |
Elamrani Abou Elassad Z, Mousannif H, Al Moatassime H. Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study. Traffic Injury Prevention, 2020, 21(3): 201-208.
|
7. |
Stonko DP, Dennis BM, Betzold RD, et al. Artificial intelligence can predict daily trauma volume and average acuity. J Trauma Acute Care Surg, 2018, 85(2): 393-397.
|
8. |
张晗, 张爱舷, 罗嘉琪, 等. 基于机器学习的创伤性休克患者院内死亡预测模型研究. 解放军医学院学报, 2023, 44(4): 339-344, 371.
|
9. |
Divya S, Indumathi V, Ishwarya S, et al. A self-diagnosis medical chatbot using artificial intelligence. Journal of Web Development and Web Designing, 2018, 3(1): 1-7.
|
10. |
Liang Y, Liu Y, Liu B, et al. Deep learning-based medical information system in first aid of surgical trauma. Computational and Mathematical Methods in Medicine, 2022, 2022: 8789920.
|
11. |
Dairi A, Zerrouki N, Harrou F, et al. EEG-based mental tasks recognition via a deep learning-driven anomaly detector. Diagnostics, 2022, 12(12): 2984.
|
12. |
Lee DH, Yoon SN. Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. Int J Environ Res Public Health, 2021, 18(1): 271.
|
13. |
Wang L, Chen XH, Ling WH, et al. Application of trauma time axis management in the treatment of severe trauma patients. Chinese Journal of Traumatology, 2021, 24(1): 39-44.
|
14. |
Wu J, Yang X, Gao J, et al. Application of MRI and CT energy spectrum imaging in hand and foot tendon lesions. J Med Syst, 2019, 43(5): 116.
|
15. |
刘想, 谢辉辉, 许玉峰, 等. 人工智能在胸部创伤肋骨骨折CT诊断中应用的初步研究. 上海交通大学学报 (医学版), 2021, 41(7): 920-925.
|
16. |
赵佳琦, 徐琪, 章建全, 等. 骨骼肌超声诊断迈向人工智能新领域: 计算机辅助骨骼肌损伤超声定量诊断. 第二军医大学学报, 2017, 38(10): 1217-1224.
|
17. |
Molinari F, Caresio C, Acharya UR, et al. Advances in quantitative muscle ultrasonography using texture analysis of ultrasound images. Ultrasound Med Biol, 2015, 41(9): 2520-2532.
|
18. |
Sun Y, Shi J, Sun L, et al. Image reconstruction through dynamic scattering media based on deep learning. Opt Express, 2019, 27(11): 16032-16046.
|
19. |
Higaki T, Nakamura Y, Zhou J, et al. Deep learning reconstruction at CT: Phantom study of the image characteristics. Acad Radiol, 2020, 27(1): 82-87.
|
20. |
Kassahun Y, Yu B, Tibebu AT, et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg, 2016, 11(4): 553-568.
|
21. |
Ryan H, Tsuda S. History of and current systems in robotic surgery//Essentials of Robotic Surgery. Cham: Springer International Publishing, 2014: 1-12.
|
22. |
Li N, Zhu Z, Xiao C, et al. The efficacy of “TiRobot” orthopaedic robot-assisted vs conventional fluoroscopic percutaneous screw fixation of the sacroiliac joint. International Orthopaedics, 2023, 47(2): 351-358.
|
23. |
Sutherland GR, Latour I, Greer AD. Integrating an image-guided robot with intraoperative MRI. IEEE Engineering in Medicine and Biology Magazine, 2008, 27(3): 59-65.
|
24. |
DiMaio S, Hanuschik M, Kreaden U. The da Vinci surgical system. Surgical Robotics: Systems Applications and Visions, 2011: 199-217.
|
25. |
Blavier A, Gaudissart Q, Cadiere GB, et al. Impact of 2D and 3D vision on performance of novice subjects using da Vinci robotic system. Acta Chirurgica Belgica, 2006, 106(6): 662-664.
|
26. |
Mega S, Bono MC, Castiglione I, et al. Robotic assisted mitral valve repair: early experience with the da Vinci S robotic system. European Heart Journal, 2013, 34(suppl_1): 979-979.
|
27. |
Kira S, Mitsui T, Sawada N, et al. Feasibility and necessity of the fourth arm of the da Vinci Si surgical system for robot—assisted partial nephrectomy. Int J Med Robot, 2020, 16(3): e2092.
|
28. |
Kim DH, Kim H, Kwak S, et al. The settings, pros and cons of the new surgical robot da Vinci Xi system for transoral robotic surgery (TORS): a comparison with the popular da Vinci Si system. Surg Laparosc Endosc Percutan Tech, 2016, 26(5): 391-396.
|
29. |
Huang YM, Huang YJ, Wei PL. Colorectal cancer surgery using the Da Vinci Xi and Si systems: comparison of perioperative outcomes. Surgical Innovation, 2019, 26(2): 192-200.
|
30. |
Wilson TG. Advancement of technology and its impact on urologists: release of the daVinci Xi, a new surgical robot. Eur Urol, 2014, 66(5): 793-794.
|
31. |
Tsuda S, Oleynikov D, Gould J, et al. SAGES TAVAC safety and effectiveness analysis: da Vinci® surgical system (Intuitive Surgical, Sunnyvale, CA). Surg Endosc, 2015, 29(10): 2873-2884.
|
32. |
Funk E, Goldenberg D, Goyal N. Demonstration of transoral robotic supraglottic laryngectomy and total laryngectomy in cadaveric specimens using the Medrobotics Flex System. Head Neck, 2017, 39(6): 1218-1225.
|
33. |
Samalavicius NE, Dulskas A, Janusonis V, et al. Robotic colorectal surgery using the Senhance® robotic system: a single center experience. Tech Coloproctol, 2022, 26(6): 437-442.
|
34. |
Li J, Tien CJ, Kassick M, et al. Investigating the efficacy of simulation-based education for interstitial gynecologic brachytherapy using a novel US/MR/CT-compatible gynecologic phantom. Brachytherapy, 2022, 21(6): S38.
|
35. |
Fan M, Liu Y, Tian W. Internal fixation in upper cervical spinal surgery: a randomized controlled study. EPiC Series in Health Sciences, 2018, 2: 51-55.
|
36. |
Prokhorenko L, Klimov D, Mishchenkov D, et al. Modular robot interface for a smart operating theater. J Robot Surg, 2023, 17(4): 1721-1733.
|
37. |
Liu H, Petukhova M V, Sampson N A, et al. Association of DSM-Ⅳposttraumatic stress disorder with traumatic experience type and history in the World Health Organization World Mental Health Surveys. JAMA psychiatry, 2017, 74(3): 270-281.
|
38. |
Malgaroli M, Schultebraucks K. Artificial intelligence and posttraumatic stress disorder (PTSD). European Psychologist, 2021. doi: 10.1027/1016-9040/a000423.
|
39. |
邓傲骞, 杨燕贻, 李云静, 等. 用机器学习算法预测长沙消防员患创伤后应激障碍的风险. 中南大学学报 (医学版), 2023, 48(1): 84-91.
|
40. |
Karas C, Manning K, Childress DT, et al. Evaluating the safety of trough versus area under the curve (AUC)-based dosing method of vancomycin with concomitant piperacillin-tazobactam. J Pharm Technol, 2022, 38(4): 218-224.
|
41. |
Malgaroli M, Schultebraucks K. Artificial intelligence and posttraumatic stress disorder (PTSD). European Psychologist, 2021, 25(4): 272-282.
|
42. |
Li X. Artificial intelligence neural network based on intelligent diagnosis. Journal of Ambient Intelligence and Humanized Computing, 2021, 12: 923-931.
|
43. |
Johnson KB, Wei WQ, Weeraratne D, et al. Precision medicine, AI, and the future of personalized health care. Clinical and Translational Science, 2021, 14(1): 86-93.
|