1. |
白璧辉, 谢兴文, 李鼎鹏, 等. 我国近5年来骨质疏松症流行病学研究现状. 中国骨质疏松杂志, 2018, 24(2): 253-258.
|
2. |
Collins SL, Stine JG, Bisanz JE, et al. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol, 2023, 21(4): 236-247.
|
3. |
Zhao YX, Song YW, Zhang L, et al. Association between bile acid metabolism and bone mineral density in postmenopausal women. Clinics (Sao Paulo), 2020, 75: e1486.
|
4. |
Assis DN. Chronic complications of cholestasis: Evaluation and management. Clin Liver Dis, 2018, 22(3): 533-544.
|
5. |
Han S, Li T, Ellis E, et al. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes. Mol Endocrinol, 2010, 24(6): 1151-1164.
|
6. |
Chaudhari SN, Luo JN, Harris DA, et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host Microbe, 2021, 29(3): 408-424.
|
7. |
Yao B, He J, Yin X, et al. The protective effect of lithocholic acid on the intestinal epithelial barrier is mediated by the vitamin D receptor via a SIRT1/Nrf2 and NF-κB dependent mechanism in Caco-2 cells. Toxicol Lett, 2019, 316: 109-118.
|
8. |
Nguyen TT, Ung TT, Li S, et al. Lithocholic acid induces miR21, promoting PTEN inhibition via STAT3 and ERK-1/2 signaling in colorectal cancer cells. Int J Mol Sci, 2021, 22(19): 10209.
|
9. |
Sheng W, Ji G, Zhang L. The effect of lithocholic acid on the gut-liver axis. Front Pharmacol, 2022, 13: 910493.
|
10. |
Wang S, Wang S, Wang X, et al. Effects of icariin on modulating gut microbiota and regulating metabolite alterations to prevent bone loss in ovariectomized rat model. Front Endocrinol (Lausanne), 2022, 13: 874849.
|
11. |
Hojo H, Ohba S. Gene regulatory landscape in osteoblast differentiation. Bone, 2020, 137: 115458.
|
12. |
Li J, Chen X, Lu L, et al. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev, 2020, 52: 88-98.
|
13. |
Tencerova M, Ferencakova M, Kassem M. Bone marrow adipose tissue: Role in bone remodeling and energy metabolism. Best Pract Res Clin Endocrinol Metab, 2021, 35(4): 101545.
|
14. |
Li Z, Hardij J, Bagchi DP, et al. Development, regulation, metabolism and function of bone marrow adipose tissues. Bone, 2018, 110: 134-140.
|
15. |
Pachón-Peña G, Bredella MA. Bone marrow adipose tissue in metabolic health. Trends Endocrinol Metab, 2022, 33(6): 401-408.
|
16. |
Guañabens N, Parés A, Ros I, et al. Severity of cholestasis and advanced histological stage but not menopausal status are the major risk factors for osteoporosis in primary biliary cirrhosis. J Hepatol, 2005, 42(4): 573-577.
|
17. |
Parés A, Guañabens N, Rodés J. Gene polymorphisms as predictors of decreased bone mineral density and osteoporosis in primary biliary cirrhosis. Eur J Gastroenterol Hepatol, 2005, 17(3): 311-315.
|
18. |
Yang S, Li H, Gu Y, et al. The association between total bile acid and bone mineral density among patients with type 2 diabetes. Front Endocrinol (Lausanne), 2023, 14: 1153205.
|
19. |
Carson MD, Warner AJ, Hathaway-Schrader JD, et al. Minocycline-induced disruption of the intestinal FXR/FGF15 axis impairs osteogenesis in mice. JCI Insight, 2023, 8(1): e160578.
|
20. |
Ma YS, Hou ZJ, Li Y, et al. Unveiling the pharmacological mechanisms of eleutheroside E against postmenopausal osteoporosis through UPLC-Q/TOF-MS-based metabolomics. Front Pharmacol, 2020, 11: 1316.
|
21. |
Li Z, Huang J, Wang F, et al. Dual targeting of bile acid receptor-1 (TGR5) and farnesoid X receptor (FXR) prevents estrogen-dependent bone loss in mice. J Bone Miner Res, 2019, 34(4): 765-776.
|
22. |
Id Boufker H, Lagneaux L, Fayyad-Kazan H, et al. Role of farnesoid X receptor (FXR) in the process of differentiation of bone marrow stromal cells into osteoblasts. Bone, 2011, 49(6): 1219-1231.
|
23. |
Cho SW, An JH, Park H, et al. Positive regulation of osteogenesis by bile acid through FXR. J Bone Miner Res, 2013, 28(10): 2109-2121.
|
24. |
Ahn TK, Kim KT, Joshi HP, et al. Therapeutic potential of tauroursodeoxycholic acid for the treatment of osteoporosis. Int J Mol Sci, 2020, 21(12): 4274.
|
25. |
Ambrosi TH, Scialdone A, Graja A, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell, 2017, 20(6): 771-784.
|
26. |
Ruiz-Gaspà S, Guañabens N, Jurado S, et al. Bile acids and bilirubin effects on osteoblastic gene profile. Implications in the pathogenesis of osteoporosis in liver diseases. Gene, 2020, 725: 144167.
|
27. |
Ruiz-Gaspà S, Guañabens N, Enjuanes A, et al. Lithocholic acid downregulates vitamin D effects in human osteoblasts. Eur J Clin Invest, 2010, 40(1): 25-34.
|
28. |
Abdelkarim M, Caron S, Duhem C, et al. The farnesoid Ⅹ receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-gamma and interfering with the Wnt/beta-catenin pathways. J Biol Chem, 2010, 285(47): 36759-36767.
|