1. |
Goutallier D, Postel JM, Gleyze P, et al. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J Shoulder Elbow Surg, 2003, 12(6): 550-554.
|
2. |
Cai Z, Zhang Y, Liu S, et al. Celecoxib, beyond anti-inflammation, alleviates tendon-derived stem cell senescence in degenerative rotator cuff tendinopathy. Am J Sports Med, 2022, 50(9): 2488-2496.
|
3. |
Plancher KD, Shanmugam J, Briggs K, et al. Diagnosis and management of partial thickness rotator cuff tears: a comprehensive review. J Am Acad Orthop Surg, 2021, 29(24): 1031-1043.
|
4. |
汤明, 文华伟, 张绍华, 等. 阔筋膜补片桥接联合肱二头肌长头腱转位治疗不可修复性肩袖撕裂. 中华骨科杂志, 2023, 43(4): 238-246.
|
5. |
Galetta MD, Keller RE, Sabbag OD, et al. Rehabilitation variability after rotator cuff repair. J Shoulder Elbow Surg, 2021, 30(6): e322-e333.
|
6. |
Burkhart SS, Diaz Pagàn JL, Wirth MA, et al. Cyclic loading of anchor-based rotator cuff repairs: confirmation of the tension overload phenomenon and comparison of suture anchor fixation with transosseous fixation. Arthroscopy, 1997, 13(6): 720-724.
|
7. |
Goradia VK, Mullen DJ, Boucher HR, et al. Cyclic loading of rotator cuff repairs: A comparison of bioabsorbable tacks with metal suture anchors and transosseous sutures. Arthroscopy, 2001, 17(4): 360-364.
|
8. |
Kim SJ, Song DH, Park JW, et al. Effect of bone marrow aspirate concentrate-platelet-rich plasma on tendon-derived stem cells and rotator cuff tendon tear. Cell Transplant, 2017, 26(5): 867-878.
|
9. |
Lui PP, Chan KM. Tendon-derived stem cells (TDSCs): from basic science to potential roles in tendon pathology and tissue engineering applications. Stem Cell Rev Rep, 2011, 7(4): 883-897.
|
10. |
Yu HB, Xiong J, Zhang HZ, et al. TGFβ1-transfected tendon stem cells promote tendon fibrosis. J Orthop Surg Res, 2022, 17(1): 358.
|
11. |
Cheng B, Ge H, Zhou J, et al. TSG-6 mediates the effect of tendon derived stem cells for rotator cuff healing. Eur Rev Med Pharmacol Sci, 2014, 18(2): 247-251.
|
12. |
Shen H, Cheng L, Zheng Q, et al. Scavenging of reactive oxygen species can adjust the differentiation of tendon stem cells and progenitor cells and prevent ectopic calcification in tendinopathy. Acta Biomater, 2022, 152: 440-452.
|
13. |
Zhao J, Qiu P, Wang Y, et al. Chitosan-based hydrogel wound dressing: From mechanism to applications, a review. Int J Biol Macromol, 2023, 244: 125250.
|
14. |
Guadarrama-Escobar OR, Serrano-Castañeda P, Anguiano-Almazán E, et al. Chitosan nanoparticles as oral drug carriers. Int J Mol Sci, 2023, 24(5): 4289.
|
15. |
Jafernik K, Ładniak A, Blicharska E, et al. Chitosan-based nanoparticles as effective drug delivery systems-A review. Molecules, 2023, 28(4): 1963.
|
16. |
Li X, Su Z, Shen K, et al. Eugenol-preconditioned mesenchymal stem cell-derived extracellular vesicles promote antioxidant capacity of tendon stem cells in vitro and in vivo. Oxid Med Cell Longev, 2022, 2022: 3945195.
|
17. |
Wang Y, Zhao Y, Ma S, et al. Injective programmable proanthocyanidin coordinated zinc-based composite hydrogel for infected bone repair. Adv Healthc Mater, 2023, 27: e202302690.
|
18. |
Chen P, Cui L, Fu SC, et al. The 3D-printed PLGA scaffolds loaded with bone marrow-derived mesenchymal stem cells augment the healing of rotator cuff repair in the rabbits. Cell Transplant, 2020, 29: 963689720973647.
|
19. |
Rothrauff BB, Smith CA, Ferrer GA, et al. The effect of adipose-derived stem cells on enthesis healing after repair of acute and chronic massive rotator cuff tears in rats. J Shoulder Elbow Surg, 2019, 28(4): 654-664.
|
20. |
Cao Y, Yang S, Zhao D, et al. Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering. J Orthop Translat, 2020, 23: 89-100.
|
21. |
Shin MJ, Shim IK, Kim DM, et al. Engineered cell sheets for the effective delivery of adipose-derived stem cells for tendon-to-bone healing. Am J Sports Med, 2020, 48(13): 3347-3358.
|
22. |
Liu Q, Hatta T, Qi J, et al. Novel engineered tendon-fibrocartilage-bone composite with cyclic tension for rotator cuff repair. J Tissue Eng Regen Med, 2018, 12(7): 1690-1701.
|
23. |
Rui YF, Lui PP, Lee YW, et al. Higher BMP receptor expression and BMP-2-induced osteogenic differentiation in tendon-derived stem cells compared with bone-marrow-derived mesenchymal stem cells. Int Orthop, 2012, 36(5): 1099-1107.
|
24. |
Mandalia K, Mousad A, Welborn B, et al. Scaffold- and graft-based biological augmentation of rotator cuff repair: an updated systematic review and meta-analysis of preclinical and clinical studies for 2010-2022. J Shoulder Elbow Surg, 2023, 32(9): 1784-1800.
|
25. |
Credille KT, Wang ZRC, Horner NS, et al. Biphasic interpositional allograft for rotator cuff repair augmentation is safe in an ovine model. Arthroscopy, 2023, 39(9): 1983-1997.
|
26. |
Abourehab MAS, Pramanik S, Abdelgawad MA, et al. Recent advances of chitosan formulations in biomedical applications. Int J Mol Sci, 2022, 23(18): 10975.
|
27. |
Willbold E, Wellmann M, Welke B, et al. Possibilities and limitations of electrospun chitosan-coated polycaprolactone grafts for rotator cuff tear repair. J Tissue Eng Regen Med, 2020, 14(1): 186-197.
|
28. |
Niu Y, Wu J, Kang Y, et al. Recent advances of magnetic chitosan hydrogel: Preparation, properties and applications. Int J Biol Macromol, 2023, 247: 125722.
|