1. |
Zhang M, Xu F, Cao J, et al. Research advances of nanomaterials for the acceleration of fracture healing. Bioact Mater, 2023, 31: 368-394.
|
2. |
Calandriello B. Callus formation in severe brain injuries. Bull Hosp Joint Dis, 1964, 25: 170-175.
|
3. |
Haffner-Luntzer M, Weber B, Morioka K, et al. Altered early immune response after fracture and traumatic brain injury. Front Immunol, 2023, 14: 1074207.
|
4. |
Yang C, Gao C, Liu N, et al. The effect of traumatic brain injury on bone healing from a novel exosome centered perspective in a mice model. J Orthop Translat, 2021, 30: 70-81.
|
5. |
Davis EL, Davis AR, Gugala Z, et al. Is heterotopic ossification getting nervous?: The role of the peripheral nervous system in heterotopic ossification. Bone, 2018, 109: 22-27.
|
6. |
Yang YQ, Tan YY, Wong R, et al. The role of vascular endothelial growth factor in ossification. Int J Oral Sci, 2012, 4(2): 64-68.
|
7. |
Bluteau G, Julien M, Magne D, et al. VEGF and VEGF receptors are differentially expressed in chondrocytes. Bone, 2007, 40(3): 568-576.
|
8. |
Liu Y, Berendsen AD, Jia S, et al. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Invest, 2012, 122(9): 3101-3113.
|
9. |
Berendsen AD, Olsen BR. How vascular endothelial growth factor-A (VEGF) regulates differentiation of mesenchymal stem cells. J Histochem Cytochem, 2014, 62(2): 103-108.
|
10. |
Yuan X, Luo Q, Shen L, et al. Hypoxic preconditioning enhances the differentiation of bone marrow stromal cells into mature oligodendrocytes via the mTOR/HIF-1α/VEGF pathway in traumatic brain injury. Brain Behav, 2020, 10(7): e01675.
|
11. |
Tian H, Yang X, Zhao J, et al. Hypoxia-preconditioned bone marrow mesenchymal stem cells improved cerebral collateral circulation and stroke outcome in mice. Arterioscler Thromb Vasc Biol, 2023, 43(7): 1281-1294.
|
12. |
Maes C, Goossens S, Bartunkova S, et al. Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J, 2010, 29(2): 424-441.
|
13. |
李继庆, 郭征, 韩金安, 等. 脑损伤合并骨折与单纯骨折患者血管内皮生长因子的表达及其临床意义. 中国组织工程研究与临床康复, 2009, 13(28): 5453-5456.
|
14. |
Mayr-Wohlfart U, Waltenberger J, Hausser H, et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone, 2002, 30(3): 472-477.
|
15. |
Zhang R, Liang Y, Wei S. The expressions of NGF and VEGF in the fracture tissues are closely associated with accelerated clavicle fracture healing in patients with traumatic brain injury. Ther Clin Risk Manag, 2018, 14: 2315-2322.
|
16. |
Wang WD, Cheng BZ, Kang WB, et al. Investigation for TGF-β1 expression in type 2 diabetes and protective effects of TGF-β1 on osteoblasts under high glucose environment. Eur Rev Med Pharmacol Sci, 2018, 22(19): 6500-6506.
|
17. |
Xia C, Ge Q, Fang L, et al. TGF-β/Smad2 signalling regulates enchondral bone formation of Gli1+ periosteal cells during fracture healing. Cell Prolif, 2020, 53(11): e12904.
|
18. |
马维, 牛彦平, 张华. 合并脑损伤大鼠骨折愈合过程中转化生长因子β1血清含量及在骨折位点的表达. 中国临床康复, 2006, 10(42): 88-91, 封面.
|
19. |
Ducy P, Karsenty G. The family of bone morphogenetic proteins. Kidney Int, 2000, 57(6): 2207-2214.
|
20. |
Kawai S, Faucheu C, Gallea S, et al. Mouse smad8 phosphorylation downstream of BMP receptors ALK-2, ALK-3, and ALK-6 induces its association with Smad4 and transcriptional activity. Biochem Biophys Res Commun, 2000, 271(3): 682-687.
|
21. |
Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev, 2005, 19(23): 2783-2810.
|
22. |
Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem, 2010, 147(1): 35-51.
|
23. |
Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev, 2005, 16(3): 251-263.
|
24. |
Nishimura R, Hata K, Matsubara T, et al. Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem, 2012, 151(3): 247-254.
|
25. |
Nolan K, Thompson TB. The DAN family: modulators of TGF-β signaling and beyond. Protein Sci, 2014, 23(8): 999-1012.
|
26. |
Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res, 2002, 17(3): 513-520.
|
27. |
郭启, 张柳. 脑外伤对骨折愈合中骨形成蛋白2表达的影响. 中国修复重建外科杂志, 2007, 21(10): 1040-1044.
|
28. |
Xie Y, Zinkle A, Chen L, et al. Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nat Rev Rheumatol, 2020, 16(10): 547-564.
|
29. |
Li X, Wang C, Xiao J, et al. Fibroblast growth factors, old kids on the new block. Semin Cell Dev Biol, 2016, 53: 155-167.
|
30. |
Taketomi T, Onimura T, Yoshiga D, et al. Sprouty2 is involved in the control of osteoblast proliferation and differentiation through the FGF and BMP signaling pathways. Cell Biol Int, 2018, 42(9): 1106-1114.
|
31. |
Schmidt A, Ladage D, Schinköthe T, et al. Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells, 2006, 24(7): 1750-1758.
|
32. |
Choi SC, Kim SJ, Choi JH, et al. Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem Cells Dev, 2008, 17(4): 725-736.
|
33. |
Matsushita T, Chan YY, Kawanami A, et al. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol Cell Biol, 2009, 29(21): 5843-5857.
|
34. |
Mollahosseini M, Ahmadirad H, Goujani R, et al. The association between traumatic brain injury and accelerated fracture healing: A study on the effects of growth factors and cytokines. J Mol Neurosci, 2021, 71(1): 162-168.
|
35. |
Steppan CM, Crawford DT, Chidsey-Frink KL, et al. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept, 2000, 92(1-3): 73-78.
|
36. |
Turner RT, Kalra SP, Wong CP, et al. Peripheral leptin regulates bone formation. J Bone Miner Res, 2013, 28(1): 22-34.
|
37. |
Iwaniec UT, Boghossian S, Lapke PD, et al. Central leptin gene therapy corrects skeletal abnormalities in leptin-deficient ob/ob mice. Peptides, 2007, 28(5): 1012-1019.
|
38. |
Yan H, Zhang HW, Fu P, et al. Leptin’s effect on accelerated fracture healing after traumatic brain injury. Neurol Res, 2013, 35(5): 537-544.
|
39. |
Graef F, Seemann R, Garbe A, et al. Impaired fracture healing with high non-union rates remains irreversible after traumatic brain injury in leptin-deficient mice. J Musculoskelet Neuronal Interact, 2017, 17(2): 78-85.
|
40. |
Seemann R, Graef F, Garbe A, et al. Leptin-deficiency eradicates the positive effect of traumatic brain injury on bone healing: histological analyses in a combined trauma mouse model. J Musculoskelet Neuronal Interact, 2018, 18(1): 32-41.
|
41. |
Garbe A, Graef F, Appelt J, et al. Leptin mediated pathways stabilize posttraumatic insulin and osteocalcin patterns after long bone fracture and concomitant traumatic brain injury and thus influence fracture healing in a combined murine trauma model. Int J Mol Sci, 2020, 21(23): 9144.
|
42. |
Murphy MG, Bach MA, Plotkin D, et al. Oral administration of the growth hormone secretagogue MK-677 increases markers of bone turnover in healthy and functionally impaired elderly adults. The MK-677 Study Group. J Bone Miner Res, 1999, 14(7): 1182-1188.
|
43. |
孙良智, 张柳, 王守君, 等. 大鼠股骨骨折合并脑损伤骨折愈合过程中胰岛素样生长因子Ⅰ在血清和骨痂中的表达. 中国临床康复, 2006, 10(40): 60-62, 插图40-42.
|
44. |
Bagherifard A, Hosseinzadeh A, Koosha F, et al. Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects. Osteoporos Int, 2023, 34(10): 1677-1701.
|
45. |
Lu X, Yu S, Chen G, et al. Insight into the roles of melatonin in bone tissue and bone-related diseases (Review). Int J Mol Med, 2021, 47(5): 82.
|
46. |
Shino H, Hasuike A, Arai Y, et al. Melatonin enhances vertical bone augmentation in rat calvaria secluded spaces. Med Oral Patol Oral Cir Bucal, 2016, 21(1): e122-e126.
|
47. |
Sethi S, Radio NM, Kotlarczyk MP, et al. Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res, 2010, 49(3): 222-238.
|
48. |
Dong P, Gu X, Zhu G, et al. Melatonin induces osteoblastic differentiation of mesenchymal stem cells and promotes fracture healing in a rat model of femoral fracture via neuropeptide Y/neuropeptide Y Receptor Y1 signaling. Pharmacology, 2018, 102(5-6): 272-280.
|
49. |
Huang H, Cheng WX, Hu YP, et al. Relationship between heterotopic ossification and traumatic brain injury: Why severe traumatic brain injury increases the risk of heterotopic ossification. J Orthop Translat, 2017, 12: 16-25.
|
50. |
Morioka K, Marmor Y, Sacramento JA, et al. Differential fracture response to traumatic brain injury suggests dominance of neuroinflammatory response in polytrauma. Sci Rep, 2019, 9(1): 12199.
|
51. |
Liu W, Chen W, Xie M, et al. Traumatic brain injury stimulates sympathetic tone-mediated bone marrow myelopoiesis to favor fracture healing. Signal Transduct Target Ther, 2023, 8(1): 260.
|
52. |
Hayashi M, Nakashima T, Taniguchi M, et al. Osteoprotection by semaphorin 3A. Nature, 2012, 485(7396): 69-74.
|
53. |
李争争, 赵军伟, 罗伟, 等. 神经毡蛋白-1在创伤性颅脑损伤伴胫骨骨折愈合过程中的表达变化. 中南大学学报 (医学版), 2017, 42(2): 154-160.
|
54. |
Zhang L, Zhang L, Mao Z, et al. Semaphoring 3A: an association between traumatic brain injury and enhanced osteogenesis. Med Hypotheses, 2013, 81(4): 713-714.
|
55. |
Song YH, Yoon J, Lee SH. The role of neuropeptide somatostatin in the brain and its application in treating neurological disorders. Experimental & Molecular Medicine, 2021, 53(3): 328-38.
|
56. |
胡朝晖, 李兵, 李连, 等. 不同程度脑损伤骨折患者血清中神经肽Y含量及意义. 中国现代医学杂志, 2009, 19(14): 2168-2172.
|
57. |
Gu XC, Zhang XB, Hu B, et al. Neuropeptide Y accelerates post-fracture bone healing by promoting osteogenesis of mesenchymal stem cells. Neuropeptides, 2016, 60: 61-66.
|
58. |
Tang P, Duan C, Wang Z, et al. NPY and CGRP inhibitor influence on ERK pathway and macrophage aggregation during fracture healing. Cell Physiol Biochem, 2017, 41(4): 1457-1467.
|
59. |
Song Y, Han GX, Chen L, et al. The role of the hippocampus and the function of calcitonin gene-related peptide in the mechanism of traumatic brain injury accelerating fracture-healing. Eur Rev Med Pharmacol Sci, 2017, 21(7): 1522-1531.
|
60. |
Wang B, Lin J, Zhang Q, et al. αCGRP affects BMSCs’ migration and osteogenesis via the Hippo-YAP pathway. Cell Transplant, 2019, 28(11): 1420-1431.
|
61. |
Appelt J, Baranowsky A, Jahn D, et al. The neuropeptide calcitonin gene-related peptide alpha is essential for bone healing. EBioMedicine, 2020, 59: 102970.
|
62. |
Zhou R, Yuan Z, Liu J, et al. Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells. Mol Med Rep, 2016, 13(6): 4689-4696.
|
63. |
Song Y, Bi L, Zhang Z, et al. Increased levels of calcitonin gene-related peptide in serum accelerate fracture healing following traumatic brain injury. Mol Med Rep, 2012, 5(2): 432-438.
|
64. |
Xu YQ, Qin ML, Feng SY, et al. Expressions and significance of calcitonin gene-related peptide and nerve growth factor in rabbit model of traumatic brain injury complicated with tibial fracture: preliminary results. Eur Rev Med Pharmacol Sci, 2019, 23(12): 5040-5050.
|
65. |
Zhang Q, Wu B, Yuan Y, et al. CGRP-modulated M2 macrophages regulate osteogenesis of MC3T3-E1 via Yap1. Arch Biochem Biophys, 2021, 697: 108697.
|
66. |
Matsui S, Tanaka M, Kamiyoshi A, et al. Endogenous calcitonin gene-related peptide deficiency exacerbates postoperative lymphedema by suppressing lymphatic capillary formation and M2 macrophage accumulation. Am J Pathol, 2019, 189(12): 2487-2502.
|
67. |
Xu J, Wang J, Chen X, et al. The effects of calcitonin gene-related peptide on bone homeostasis and regeneration. Curr Osteoporos Rep, 2020, 18(6): 621-632.
|
68. |
Fukuda T, Takeda S, Xu R, et al. Sema3A regulates bone-mass accrual through sensory innervations. Nature, 2013, 497(7450): 490-493.
|
69. |
Li Z, Meyers CA, Chang L, et al. Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest, 2019, 129(12): 5137-5150.
|
70. |
Murao H, Yamamoto K, Matsuda S, et al. Periosteal cells are a major source of soft callus in bone fracture. J Bone Miner Metab, 2013, 31(4): 390-398.
|
71. |
Mi J, Xu JK, Yao Z, et al. Implantable electrical stimulation at dorsal root ganglions accelerates osteoporotic fracture healing via calcitonin gene-related peptide. Adv Sci (Weinh), 2022, 9(1): e2103005.
|
72. |
Chen H, Hu B, Lv X, et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun, 2019, 10(1): 181.
|
73. |
Meyfroidt G, Baguley IJ, Menon DK. Paroxysmal sympathetic hyperactivity: the storm after acute brain injury. Lancet Neurol, 2017, 16(9): 721-729.
|
74. |
Lin Z, Xiong Y, Meng W, et al. Exosomal PD-L1 induces osteogenic differentiation and promotes fracture healing by acting as an immunosuppressant. Bioact mater, 2022, 13: 300-311.
|
75. |
Ragipoglu D, Bülow J, Hauff K, et al. Mast cells drive systemic inflammation and compromised bone repair after trauma. Front Immunol, 2022, 13: 883707.
|
76. |
Schlundt C, Fischer H, Bucher CH, et al. The multifaceted roles of macrophages in bone regeneration: A story of polarization, activation and time. Acta Biomater, 2021, 133: 46-57.
|
77. |
Shim DW, Hong H, Cho KC, et al. Accelerated tibia fracture healing in traumatic brain injury in accordance with increased hematoma formation. BMC Musculoskelet Disord, 2022, 23(1): 1110.
|
78. |
De Filippo K, Dudeck A, Hasenberg M, et al. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood, 2013, 121(24): 4930-4937.
|
79. |
Probst C, Mirzayan MJ, Mommsen P, et al. Systemic inflammatory effects of traumatic brain injury, femur fracture, and shock: an experimental murine polytrauma model. Mediators Inflamm, 2012, 2012: 136020.
|
80. |
Maegele M, Sauerland S, Bouillon B, et al. Differential immunoresponses following experimental traumatic brain injury, bone fracture and “two-hit”-combined neurotrauma. Inflamm Res, 2007, 56(8): 318-323.
|