1. |
Wang S, Zhao S, Yu J, et al. Advances in translational 3D printing for cartilage, bone, and osteochondral tissue engineering. Small, 2022, 18(36): e2201869.
|
2. |
孙亚迪, 马剑雄, 王岩, 等. 三周期极小曲面骨支架微观结构对支架性能的影响研究进展. 中国修复重建外科杂志, 2023, 37(10): 1314-1318.
|
3. |
Wei X, Zhou W, Tang Z, et al. Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis. Bioact Mater, 2022, 20: 16-28.
|
4. |
Lee UL, Yun S, Lee H, et al. Osseointegration of 3D-printed titanium implants with surface and structure modifications. Dent Mater, 2022, 38(10): 1648-1660.
|
5. |
Capuana E, Lopresti F, Ceraulo M, et al. Poly-l-lactic acid (PLLA)-based biomaterials for regenerative medicine: a review on processing and applications. Polymers (Basel), 2022, 14(6): 1153.
|
6. |
谌斯, 杜昶. 具有开放孔结构的左旋聚乳酸/卵磷脂多孔支架的制备及成骨性能研究. 中国修复重建外科杂志, 2018, 32(9): 1123-1130.
|
7. |
Lopez Marquez A, Gareis IE, Dias FJ, et al. How fiber surface topography affects interactions between cells and electrospun scaffolds: a systematic review. Polymers (Basel), 2022, 14(1): 209.
|
8. |
郭西萌, 金莉莉, 李春旺, 等. 等离子体辅助纳米涂层的构建及其成骨性能. 功能高分子学报, 2022, 35(1): 54-60.
|
9. |
Hu X, Zhao W, Zhang Z, et al. Novel 3D printed shape-memory PLLA-TMC/GA-TMC scaffolds for bone tissue engineering with the improved mechanical properties and degradability. Chinese Chemical Letters, 2023, 34(1): 251-254.
|
10. |
Seddiqi H, Abbasi-Ravasjani S, Saatchi A, et al. Osteogenic activity on NaOH-etched three-dimensional-printed poly-ɛ-caprolactone scaffolds in perfusion or spinner flask bioreactor. J Tissue Eng Part C Methods, 2023, 29(6): 230-241.
|
11. |
Cunha W, Carvalho O, Henriques B, et al. Surface modification of zirconia dental implants by laser texturing. Lasers Med Sci, 2022, 37(1): 77-93.
|
12. |
Gupta D, Singh AK, Kar N, et al. Modelling and optimization of NaOH-etched 3-D printed PCL for enhanced cellular attachment and growth with minimal loss of mechanical strength. Mater Sci Eng C Mater Biol Appl, 2019, 98: 602-611.
|
13. |
Kang Y, Wang F, Zhang Z, et al. Dissolution and interaction of cellulose carbamate in NaOH/ZnO aqueous solutions. Polymers (Basel). 2021, 13(7): 1092.
|
14. |
Dryhval B, Husak Y, Sulaieva O, et al. In vivo safety of new coating for biodegradable magnesium implants. Materials (Basel), 2023, 16(17): 5807.
|
15. |
Yoon J, Kim S, Park KH, et al. Biocompatible and oxidation-resistant Ti3 C2 Tx MXene with halogen-free surface terminations. Small Methods, 2023, 7(8): e2201579.
|
16. |
Momeni S, Safder M, Khondoker MAH, et al. Valorization of hemp hurds as bio-sourced additives in PLA-based biocomposites. Polymers (Basel), 2021, 13(21): 3786.
|
17. |
Hulka I, Mirza-Rosca JC, Buzdugan D, et al. Microstructure and mechanical characteristics of Ti-Ta alloys before and after NaOH treatment and their behavior in simulated body fluid. Materials (Basel), 2023, 16(5): 1943.
|
18. |
Jaidev LR, Chatterjee K. Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Materials & Design, 2019, 161: 44-54.
|
19. |
Fryń P, Lalik S, Bogdanowicz KA, et al. Degradation of hybrid material l, d-PLA∶5CB∶SWCN under the influence of neutral, acidic, and alkaline environments. RSC Adv, 2023, 13(6): 3792-3806.
|
20. |
Schneider M, Fritzsche N, Puciul-Malinowska A, et al. Surface etching of 3D printed poly(lactic acid) with NaOH: A systematic approach. Polymers (Basel), 2020, 12(8): 1711.
|
21. |
Al Abdallah H, Abu-Jdayil B, Iqbal MZ. The effect of alkaline treatment on poly (lactic acid)/date palm wood green composites for thermal insulation. Polymers (Basel), 2022, 14(6): 1143.
|
22. |
Sochacka P, Jurczyk MU, Kowalski K, et al. Ultrafine-grained Ti-31Mo-type composites with HA and Ag, Ta2O5 or CeO2 addition for implant applications. Materials (Basel), 2021, 14(3): 644.
|
23. |
Watanabe M, Maeda H, Hashimoto Y, et al. Protein adsorption and cell adhesion behavior of engineering plastics plasticized by supercritical carbon dioxide. Dent Mater J, 2020, 39(6): 1033-1038.
|
24. |
Foroushani FT, Dzobo K, Khumalo NP, et al. Advances in surface modifications of the silicone breast implant and impact on its biocompatibility and biointegration. Biomater Res, 2022, 26(1): 80.
|
25. |
Abaricia JO, Shah AH, Chaubal M, et al. Wnt signaling modulates macrophage polarization and is regulated by biomaterial surface properties. Biomaterials, 2020, 243: 119920.
|
26. |
江瑶, 黎红, 林炯, 等. 不同粗糙度SLA钛形貌对人牙龈成纤维细胞黏附及增殖的影响. 口腔颌面修复学杂志, 2019, 20(2): 81-86.
|
27. |
Dhania S, Rani R, Kumar R, et al. Fabricated polyhydroxyalkanoates blend scaffolds enhance cell viability and cell proliferation. J Biotechnol, 2023, 361: 30-40.
|
28. |
Du H, Chen Z, Gong X, et al. Surface grafting of sericin onto thermoplastic polyurethanes to improve cell adhesion and function. J Biomater Sci Polym Ed, 2023, 34(10): 1382-1397.
|
29. |
Lee JH, Lee SJ, Khang G, et al. The effect of fluid shear stress on endothelial cell adhesiveness to polymer surfaces with wettability gradient. J Colloid Interface Sci, 2000, 230(1): 84-90.
|
30. |
张鹏飞. 不同孔径PGSA支架对羊颞下颌关节盘细胞黏附增殖的影响. 兰州: 兰州大学, 2021.
|
31. |
Brachet A, Bełżek A, Furtak D, et al. Application of 3D printing in bone grafts. Cells, 2023, 12(6): 859.
|
32. |
Voisin M, Ball M, O’Connell C, et al. Osteoblasts response to microstructured and nanostructured polyimide film, processed by the use of silica bead microlenses. Nanomedicine, 2010, 6(1): 35-43.
|