1. |
Leontaritis N, Hinojosa L, Panchbhavi VK. Arthroscopically detected intra-articular lesions associated with acute ankle fractures. J Bone Joint Surg (Am), 2009, 91(2): 333-339.
|
2. |
Schachter AK, Chen AL, Reddy PD, et al. Osteochondral lesions of the talus. J Am Acad Orthop Surg, 2005, 13(3): 152-158.
|
3. |
Looze CA, Capo J, Ryan MK, et al. Evaluation and management of osteochondral lesions of the talus. Cartilage, 2017, 8(1): 19-30.
|
4. |
Hepple S, Winson IG, Glew D. Osteochondral lesions of the talus: a revised classification. Foot Ankle Int, 1999, 20(12): 789-793.
|
5. |
Rikken QGH, Kerkhoffs GMMJ. Osteochondral lesions of the talus: An individualized treatment paradigm from the Amsterdam Perspective. Foot Ankle Clin, 2021, 26(1): 121-136.
|
6. |
Hannon CP, Bayer S, Murawski CD, et al. Debridement, curettage, and bone marrow stimulation: proceedings of the international consensus meeting on cartilage repair of the ankle. Foot Ankle Int, 2018, 39(1_suppl): 16S-22S.
|
7. |
Fu S, Yang K, Li X, et al. Radiographic and clinical outcomes after arthroscopic microfracture for osteochondral lesions of the talus: 5-year results in 355 consecutive ankles. Orthop J Sports Med, 2022, 10(10): 23259671221128772.
|
8. |
Toale J, Shimozono Y, Mulvin C, et al. Midterm outcomes of bone marrow stimulation for primary osteochondral lesions of the talus: a systematic review. Orthop J Sports Med, 2019, 7(10): 2325967119879127.
|
9. |
Bae DK, Yoon KH, Song SJ. Cartilage healing after microfracture in osteoarthritic knees. Arthroscopy, 2006, 22(4): 367-374.
|
10. |
Park JH, Park KH, Cho JY, et al. Bone marrow stimulation for osteochondral lesions of the talus: are clinical outcomes maintained 10 years later? Am J Sports Med, 2021, 49(5): 1220-1226.
|
11. |
Dahmen J, Hurley ET, Shimozono Y, et al. Evidence-based treatment of failed primary osteochondral lesions of the talus: a systematic review on clinical outcomes of bone marrow stimulation. Cartilage, 2021, 13(1_suppl): 1411S-1421S.
|
12. |
Kim JY, Reyes FJ, Yi Y, et al. Is antegrade transmalleolar drilling method for osteochondral lesion of talus necessary? Iatrogenic cystic formation at the tibia: a report of five cases. Clin Orthop Surg, 2016, 8(1): 119-122.
|
13. |
Choi JI, Lee KB. Comparison of clinical outcomes between arthroscopic subchondral drilling and microfracture for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc, 2016, 24(7): 2140-2147.
|
14. |
Artioli E, Mazzotti A, Gerardi S, et al. Retrograde drilling for ankle joint osteochondral lesions: a systematic review. J Orthop Traumatol, 2023, 24(1): 37.
|
15. |
Wang D, Shen Z, Fang X, et al. Vascular compromising effect of drilling for osteochondral lesions of the talus: a three-dimensional micro-computed tomography study. Arthroscopy, 2019, 35(10): 2930-2937.
|
16. |
Dahmen J, Lambers KTA, Reilingh ML, et al. No superior treatment for primary osteochondral defects of the talus. Knee Surg Sports Traumatol Arthrosc, 2018, 26(7): 2142-2157.
|
17. |
Jungesblut OD, Berger-Groch J, Hoffmann M, et al. Electromagnetic navigation reduces radiation exposure for retrograde drilling in osteochondrosis dissecans of the talus. BMC Musculoskelet Disord, 2021, 22(1): 135.
|
18. |
Shim DW, Park KH, Lee JW, et al. Primary autologous osteochondral transfer shows superior long-term outcome and survival rate compared with bone marrow stimulation for large cystic osteochondral lesion of talus. Arthroscopy, 2021, 37(3): 989-997.
|
19. |
Gianakos AL, Okedele O, Mulcahey MK, et al. Autologous osteochondral transplantation for osteochondral lesions of the talus-does sex play a role? J Foot Ankle Surg, 2023, 62(1): 96-101.
|
20. |
Shimozono Y, Hurley ET, Myerson CL, et al. Good clinical and functional outcomes at mid-term following autologous osteochondral transplantation for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc, 2018, 26(10): 3055-3062.
|
21. |
Nguyen A, Ramasamy A, Walsh M, et al. Autologous osteochondral transplantation for large osteochondral lesions of the talus is a viable option in an athletic population. Am J Sports Med, 2019, 47(14): 3429-3435.
|
22. |
Shimozono Y, Seow D, Yasui Y, et al. Knee-to-talus donor-site morbidity following autologous osteochondral transplantation: a meta-analysis with best-case and worst-case analysis. Clin Orthop Relat Res, 2019, 477(8): 1915-1931.
|
23. |
Winkler PW, Geyer S, Walzl D, et al. Favorable long-term clinical and radiologic outcomes with high survivorship after autologous osteochondral transplantation of the talus. Knee Surg Sports Traumatol Arthrosc, 2023, 31(6): 2166-2173.
|
24. |
Gaul F, Tírico LEP, McCauley JC, et al. Osteochondral allograft transplantation for osteochondral lesions of the talus: midterm follow-up. Foot Ankle Int, 2019, 40(2): 202-209.
|
25. |
Chu CH, Chen IH, Yang KC, et al. Midterm results of fresh-frozen osteochondral allografting for osteochondral lesions of the talus. Foot Ankle Int, 2021, 42(1): 8-16.
|
26. |
Migliorini F, Maffulli N, Baroncini A, et al. Allograft versus autograft osteochondral transplant for chondral defects of the talus: systematic review and meta-analysis. Am J Sports Med, 2022, 50(12): 3447-3455.
|
27. |
de l'Escalopier N, Amouyel T, Mainard D, et al. Long-term outcome for repair of osteochondral lesions of the talus by osteochondral autograft: A series of 56 Mosaicplasties®. Orthop Traumatol Surg Res, 2021, 107(8S): 103075.
|
28. |
Harada H, Kobayashi M, Matsuda S, et al. Arthroscopic evaluation after osteochondral autogenous transfer with osteotomy of medial malleolus for osteochondral lesion of the talar dome. Foot Ankle Surg, 2022, 28(1): 25-29.
|
29. |
Bull PE, Berlet GC, Canini C, et al. Rate of malunion following bi-plane chevron medial malleolar osteotomy. Foot Ankle Int, 2016, 37(6): 620-626.
|
30. |
Zhang Y, Liang JQ, Wen XD, et al. Triplane osteotomy combined with talar non-weight-bearing area autologous osteochondral transplantation for osteochondral lesions of the talus. BMC Musculoskelet Disord, 2022, 23(1): 79.
|
31. |
Wixted CM, Dekker TJ, Adams SB. Particulated juvenile articular cartilage allograft transplantation for osteochondral lesions of the knee and ankle. Expert Rev Med Devices, 2020, 17(3): 235-244.
|
32. |
Zhang C, Zhao X, Ao Y, et al. Proliferation ability of particulated juvenile allograft cartilage. J Orthop Surg Res, 2021, 16(1): 56.
|
33. |
Ryan PM, Turner RC, Anderson CD, et al. Comparative outcomes for the treatment of articular cartilage lesions in the ankle with a DeNovo NT natural tissue graft: open versus arthroscopic treatment. Orthop J Sports Med, 2018, 6(12): 2325967118812710.
|
34. |
Aldawsari K, Alrabai HM, Sayed A, et al. Role of particulated juvenile cartilage allograft transplantation in osteochondral lesions of the talus: a systematic review. Foot Ankle Surg, 2021, 27(1): 10-14.
|
35. |
Manzi J, Arzani A, Hamula MJ, et al. Long-term patient-reported outcome measures following particulated juvenile allograft cartilage implantation for treatment of difficult osteochondral lesions of the talus. Foot Ankle Int, 2021, 42(11): 1399-1409.
|
36. |
Hu M, Li X, Xu X. Efficacy and safety of autologous chondrocyte implantation for osteochondral defects of the talus: a systematic review and meta-analysis. Arch Orthop Trauma Surg, 2023, 143(1): 71-79.
|
37. |
López-Alcorocho JM, Guillén-Vicente I, Rodríguez-Iñigo E, et al. High-density autologous chondrocyte implantation as treatment for ankle osteochondral defects. Cartilage, 2021, 12(3): 307-319.
|
38. |
Lenz CG, Tan S, Carey AL, et al. Matrix-induced autologous chondrocyte implantation (MACI) grafting for osteochondral lesions of the talus. Foot Ankle Int, 2020, 41(9): 1099-1105.
|
39. |
Götze C, Nieder C, Felder H, et al. AMIC for focal osteochondral defect of the talar shoulder. Life (Basel), 2020, 10(12): 328.
|
40. |
Migliorini F, Maffulli N, Bell A, et al. Autologous matrix-induced chondrogenesis (AMIC) for osteochondral defects of the talus: a systematic review. Life (Basel), 2022, 12(11): 1738.
|
41. |
Becher C, Malahias MA, Ali MM, et al. Arthroscopic microfracture vs arthroscopic autologous matrix-induced chondrogenesis for the treatment of articular cartilage defects of the talus. Knee Surg Sports Traumatol Arthrosc, 2019, 27(9): 2731-2736.
|
42. |
Migliorini F, Eschweiler J, Maffulli N, et al. Autologous matrix induced chondrogenesis (AMIC) compared to microfractures for chondral defects of the talar shoulder: a five-year follow-up prospective cohort study. Life (Basel), 2021, 11(3): 244.
|
43. |
Choi WJ, Park KK, Kim BS, et al. Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med, 2009, 37(10): 1974-1980.
|
44. |
Ayyaswamy B, Salim M, Sidaginamale R, et al. Early to medium term outcomes of osteochondral lesions of the talus treated by autologous matrix induced chondrogenesis (AMIC). Foot Ankle Surg, 2021, 27(2): 207-212.
|
45. |
Yontar NS, Aslan L, Öğüt T. Functional outcomes of autologous matrix-related chondrogenesis to treat large osteochondral lesions of the talus. Foot Ankle Int, 2022, 43(6): 783-789.
|
46. |
Henning PR, Grear BJ. Platelet-rich plasma in the foot and ankle. Curr Rev Musculoskelet Med, 2018, 11(4): 616-623.
|
47. |
杨金杰. 微骨折术联合关节腔内注射富血小板血浆治疗小面积距骨骨软骨损伤. 中国修复重建外科杂志, 2020, 34(1): 53-56.
|
48. |
Woo I, Park JJ, Seok HG. The efficacy of platelet-rich plasma augmentation in microfracture surgery osteochondral lesions of the talus: a systematic review and meta-analysis. J Clin Med, 2023, 12(15): 4998.
|
49. |
Everts P, Onishi K, Jayaram P, et al. Platelet-rich plasma: new performance understandings and therapeutic considerations in 2020. Int J Mol Sci, 2020, 21(20): 7794.
|
50. |
Murphy EP, McGoldrick NP, Curtin M, et al. A prospective evaluation of bone marrow aspirate concentrate and microfracture in the treatment of osteochondral lesions of the talus. Foot Ankle Surg, 2019, 25(4): 441-448.
|
51. |
Saw KY, Hussin P, Loke SC, et al. Articular cartilage regeneration with autologous marrow aspirate and hyaluronic Acid: an experimental study in a goat model. Arthroscopy, 2009, 25(12): 1391-1400.
|