1. |
张世民. 老年髋部转子间骨折 (第二版). 北京: 科学出版社, 2023: 281-283, 507-513.
|
2. |
李清, 张世民. 头髓钉治疗股骨粗隆间骨折中远侧交锁螺钉应用的研究进展. 中国修复重建外科杂志, 2014, 28(9): 1177-1180.
|
3. |
Lai CY, Liu CH, Lai PJ, et al. Perioperative peri-implant fracture after osteosynthesis for geriatric femoral pertrochanteric fracture with the linear compression integrated screw intramedullary nail system (INTERTANTM): a retrospective study. J Orthop Surg Res, 2023, 18(1): 932.
|
4. |
宋德磊, 张世民. 亚洲型股骨近端防旋髓内钉与国人股骨前弓匹配性的影像学研究. 中华创伤骨科杂志, 2012, 14(2): 103-107.
|
5. |
Chang SM, Song DL, Ma Z, et al. Mismatch of the short straight cephalomedullary nail (PFNA-Ⅱ) with the anterior bow of the femur in an Asian population. J Orthop Trauma, 2014, 28(1): 17-22.
|
6. |
张世民, 张英琪, 胡孙君, 等. 带前弓弧度短型股骨转子间髓内钉的研制及其匹配性的术后影像学研究. 中国修复重建外科杂志, 2016, 30(10): 1200-1204.
|
7. |
Chang SM, Hu SJ, Ma Z, et al. Femoral intertrochanteric nail (fitn): a new short version design with an anterior curvature and a geometric match study using postoperative radiographs. Injury, 2018, 49(2): 328-333.
|
8. |
Klima ML. Trust but verify: Design differences in the prevention of targeting errors in cephalomedullary nails. J Orthop Trauma, 2023, 37(10S): S41-S48.
|
9. |
Kim K, Kim YH, Park WM, et al. Stress concentration near pin holes associated with fracture risk after computer navigated total knee arthroplasty. Comput Aided Surg, 2010, 15(4-6): 98-103.
|
10. |
Jung HJ, Jung YB, Song KS, et al. Fractures associated with computer-navigated total knee arthroplasty. A report of two cases. J Bone Joint Surg (Am), 2007, 89(10): 2280-2284.
|
11. |
Lacroix H, Arwert H, Snijders CJ, et al. Prevention of fracture at the distal locking site of the gamma nail. A biomechanical study. J Bone Joint Surg (Br), 1995, 77(2): 274-276.
|
12. |
Fox MJ, Scarvell JM, Smith PN, et al. Lateral drill holes decrease strength of the femur: an observational study using finite element and experimental analyses. J Orthop Surg Res, 2013, 8: 29.
|
13. |
Yoo J, Ma X, Lee J, et al. Research update on stress riser fractures. Indian J Orthop, 2020, 55(3): 560-570.
|
14. |
Laurence M, Freeman MA, Swanson SA. Engineering considerations in the internal fxation of fractures of the tibial shaft. J Bone Joint Surg (Br), 1969, 51(4): 754-768.
|
15. |
Brooks DB, Burstein AH, Frankel VH. The biomechanics of torsional fractures. The stress concentration effect of a drill hole. J Bone Joint Surg (Am), 1970, 52(3): 507-514.
|
16. |
Johnson BA, Fallat LM. The effect of screw holes on bone strength. J Foot Ankle Surg, 1997, 36(6): 446-451.
|
17. |
Ho KW, Gilbody J, Jameson T, et al. The effect of 4 mm bicortical drill hole defect on bone strength in a pig femur model. Arch Orthop Trauma Surg, 2010, 130(6): 797-802.
|
18. |
Burstein AH, Currey J, Frankel VH, et al. Bone strength. The effect of screw holes. J Bone Joint Surg (Am), 1972, 54(6): 1143-1156.
|
19. |
Hipp JA, Edgerton BC, An KN, et al. Structural consequences of transcortical holes in long bones loaded in torsion. J Biomech, 1990, 23(12): 1261-1268.
|
20. |
Reilly DT, Burstein AH. The elastic and ultimate properties of compact bone tissue. J Biomech, 1975, 8(6): 393-405.
|
21. |
Cho HM, Choi SM, Park JY, et al. A finite element analysis and cyclic load experiment on an additional transcortical-type hole formed around the proximal femoral nail system’s distal locking screw. BMC Musculoskelet Disord, 2022, 23(1): 92.
|
22. |
Yiachos CJ, Saha S. The effect of drill hole location on load bearing capacity of long bones. J Orthop, 2018, 15(2): 302-307.
|
23. |
Acklin YP, Bircher A, Morgenstern M, et al. Benefits of hardware removal after plating. Injury, 2018, 49 Suppl 1: S91-S95.
|