1. |
Gao Y, Wang Y, Zhang J, et al. Advancing neural regeneration via adaptable hydrogels: Enriched with Mg2+ and silk fibroin to facilitate endogenous cell infiltration and macrophage polarization. Bioact Mater, 2023, 33: 100-113.
|
2. |
Zhang Y, Yi D, Hong Q, et al. Platelet-rich plasma-derived exosomes boost mesenchymal stem cells to promote peripheral nerve regeneration. J Control Release, 2024, 367: 265-282.
|
3. |
Ding Z, Jiang M, Qian J, et al. Role of transforming growth factor-β in peripheral nerve regeneration. Neural Regen Res, 2024, 19(2): 380-386.
|
4. |
黄喜军, 朱庆棠, 江丽, 等. 去细胞异种神经复合同种异体脂肪干细胞修复猕猴周围神经缺损的免疫反应研究. 中国修复重建外科杂志, 2012, 26(8): 993-1000.
|
5. |
Khaled MM, Ibrahium AM, Abdelgalil AI, et al. Regenerative strategies in treatment of peripheral nerve injuries in different animal models. Tissue Eng Regen Med, 2023, 20(6): 839-877.
|
6. |
Cui TW, Lu LF, Cao XD, et al. Exosomes combined with biosynthesized cellulose conduits improve peripheral nerve regeneration. IBRO Neurosci Rep, 2023, 15: 262-269.
|
7. |
Ding W, Li X, Chen H, et al. Nerve merging repair in the replantation of a severed limb with defects in multiple nerves: five cases and long-term follow-up. BMC Surg, 2022, 22(1): 222. doi: 10.1186/s12893-022-01673-1.
|
8. |
Bajaber MA, Hameed A, Hussain G, et al. Chitosan nanoparticles loaded with Foeniculum vulgare extract regulate retrieval of sensory and motor functions in mice. Heliyon, 2024, 10(3): e25414. doi: 10.1016/j.heliyon.2024.e25414.
|
9. |
Zhao G, Zhang T, Li J, et al. Parkin-mediated mitophagy is a potential treatment for oxaliplatin-induced peripheral neuropathy. Am J Physiol Cell Physiol, 2024, 326(1): C214-C228.
|
10. |
Zhang D, Li X, Jing B, et al. α-Asarone attenuates chronic sciatica by inhibiting peripheral sensitization and promoting neural repair. Phytother Res, 2023, 37(1): 151-162.
|
11. |
Liu N, Zhang GX, Zhu CH, et al. Antinociceptive and neuroprotective effect of echinacoside on peripheral neuropathic pain in mice through inhibiting P2X7R/FKN/CX3CR1 pathway. Biomed Pharmacother, 2023, 168: 115675. doi: 10.1016/j.biopha.2023.115675.
|
12. |
Niu S, Wang Z, Yin X, et al. A preliminary predictive model for selenium nutritional status in residents based on three selenium biomarkers. J Trace Elem Med Biol, 2024, 81: 127347. doi: 10.1016/j.jtemb.2023.127347.
|
13. |
García-Esquinas E, Carballo-Casla A, Ortolá R, et al. Blood selenium concentrations are inversely associated with the risk of undernutrition in older adults. Nutrients, 2023, 15(22): 4750. doi: 10.3390/nu15224750.
|
14. |
Wu A, Han M, Ni Z, et al. Multifunctional Sr/Se co-doped ZIF-8 nanozyme for chemo/chemodynamic synergistic tumor therapy via apoptosis and ferroptosis. Theranostics, 2024, 14(5): 1939-1955.
|
15. |
Li H, Wang H, Cui L, et al. The effect of selenium on the proliferation of bovine endometrial epithelial cells in a lipopolysaccharide-induced damage model. BMC Vet Res, 2024, 20(1): 109. doi: 10.1186/s12917-024-03958-4.
|
16. |
Garcia CS, da Rocha MJ, Presa MH, et al. Exploring the antioxidant potential of chalcogen-indolizines throughout in vitro assays. PeerJ, 2024, 12: e17074. doi: 10.7717/peerj.17074.
|
17. |
Fei Y, Li T, Wu R, et al. Se-(methyl)-selenocysteine ameliorates blood-brain barrier disruption of focal cerebral ischemia mice via ferroptosis inhibition and tight junction upregulation in an Akt/GSK3β-dependent manner. Psychopharmacology (Berl), 2024, 241(2): 379-399.
|
18. |
Zhang ZH, Peng JY, Chen YB, et al. Different effects and mechanisms of selenium compounds in improving pathology in Alzheimer’s disease. Antioxidants (Basel), 2023, 12(3): 702. doi: 10.3390/antiox12030702.
|
19. |
Kobayashi H, Suzuki N, Ogra Y. Mutagenicity comparison of nine bioselenocompounds in three Salmonella typhimurium strains. Toxicol Rep, 2018, 5: 220-223.
|
20. |
Li HA, Jia LL, Deng ZY, et al. The effects of selenium on the growth and bone development in the weaned rats. Food Bioscience, 2023, 55: 103018. doi: 10.1016/j.fbio.2023.103018.
|
21. |
Xie Y, Liu Q, Zheng L, et al. Se-methylselenocysteine ameliorates neuropathology and cognitive deficits by attenuating oxidative stress and metal dyshomeostasis in alzheimer model mice. Mol Nutr Food Res, 2018, 62(12): e1800107.Xie Y, Liu Q, Zheng L, et al. Se-methylselenocysteine ameliorates neuropathology and cognitive deficits by attenuating oxidative stress and metal dyshomeostasis in alzheimer model mice. Mol Nutr Food Res, 2018, 62(12): e1800107. doi: 10.1002/mnfr.201800107.
|
22. |
王玺, 王胜, 肖玉周. 脐血间充质干细胞诱导分化为类雪旺细胞修复大鼠坐骨神经损伤的实验研究. 中国修复重建外科杂志, 2015, 29(2): 213-220.
|
23. |
Wu G, Wen X, Kuang R, et al. Roles of macrophages and their interactions with schwann cells after peripheral nerve injury. Cell Mol Neurobiol, 2023, 44(1): 11. doi: 10.1007/s10571-023-01442-5.
|
24. |
Wu X, Jia W. Selenium decipher: Trapping of native selenomethionine-containing peptides in selenium-enriched milk and unveiling the deterioration after ultrahigh-temperature treatment. Anal Chem, 2024, 96(3): 1156-1166.
|
25. |
Yalçın MB, Bora ES, Erbaş O. The effect of liraglutide on axon regeneration and functional recovery after peripheral nerve lesion. Curr Issues Mol Biol, 2024, 46(1): 327-339.
|
26. |
Krause Neto W, Silva WA, Ciena AP, et al. Effects of strength training and anabolic steroid in the peripheral nerve and skeletal muscle morphology of aged rats. Front Aging Neurosci, 2017, 9: 205. doi: 10.3389/fnagi.2017.00205.
|
27. |
Nevinsky GA, Buneva VN, Dmitrenok PS. Multiple sclerosis: Enzymatic cross site-specific recognition and hydrolysis of H3 histone by IgGs against H3, H1, H2A, H2B, H4 histones, myelin basic protein, and DNA. Biomedicines, 2022, 10(10): 2663. doi: 10.3390/biomedicines10102663.
|
28. |
Smirnova EV, Rakitina TV, Ziganshin RH, et al. Comprehensive atlas of the myelin basic protein interaction landscape. Biomolecules, 2021, 11(11): 1628. doi: 10.3390/biom11111628.
|
29. |
Sobierajski E, Lauer G, Czubay K, et al. Development of myelin in fetal and postnatal neocortex of the pig, the European wild boar Sus scrofa. Brain Struct Funct, 2023, 228(3-4): 947-966.
|
30. |
Liao D, Li X, Dong Y, et al. The role of Wnt/β-catenin signaling pathway in the transdifferentiation from periodontal ligament stem cells to Schwann cells. Cell Reprogram, 2017, 19(6): 384-388.
|
31. |
Bulle A, Liu P, Seehra K, et al. Combined KRAS-MAPK pathway inhibitors and HER2-directed drug conjugate is efficacious in pancreatic cancer. Nat Commun, 2024, 15(1): 2503. doi: 10.1038/s41467-024-46811-w.
|
32. |
Deng Y, Yang L, Xie Q, et al. Protein kinase A is involved in neuropathic pain by activating the p38MAPK pathway to mediate spinal cord cell apoptosis. Mediators Inflamm, 2020, 2020: 6420425. doi: 10.1155/2020/6420425.
|
33. |
Ma J, Li T, Yuan H, et al. MicroRNA-29a inhibits proliferation and motility of Schwannoma cells by targeting CDK6. J Cell Biochem, 2018, 119(3): 2617-2626.
|
34. |
Khan A, Shal B, Khan AU, et al. Withametelin, a steroidal lactone, isolated from datura innoxa attenuates STZ-induced diabetic neuropathic pain in rats through inhibition of NF-kB/MAPK signaling. Food Chem Toxicol, 2023, 175: 113742. doi: 10.1016/j.fct.2023.113742.
|
35. |
Caillaud M, Chantemargue B, Richard L, et al. Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress. Neuropharmacology, 2018, 139: 98-116.
|
36. |
Fideles SOM, de Cássia Ortiz A, Buchaim DV, et al. Influence of the neuroprotective properties of quercetin on regeneration and functional recovery of the nervous system. Antioxidants (Basel), 2023, 12(1): 149. doi: 10.3390/antiox12010149.
|
37. |
Brambilla S, Guiotto M, Torretta E, et al. Human platelet lysate stimulates neurotrophic properties of human adipose-derived stem cells better than Schwann cell-like cells. Stem Cell Res Ther, 2023, 14(1): 179. doi: 10.1186/s13287-023-03407-3.
|
38. |
Chen T, Wu Z, Hou Q, et al. The dual angiogenesis effects via Nrf2/HO-1 signaling pathway of melatonin nanocomposite scaffold on promoting diabetic bone defect repair. Int J Nanomedicine, 2024, 19: 2709-2732.
|
39. |
Zhang L, Song W, Li H, et al. 4-octyl itaconate alleviates cisplatin-induced ferroptosis possibly via activating the NRF2/HO-1 signalling pathway. J Cell Mol Med, 2024, 28(7): e18207. doi: 10.1111/jcmm.18207.
|
40. |
Li D, Zhang W, Fu H, et al. DL-3- n-butylphthalide attenuates doxorubicin-induced acute cardiotoxicity via Nrf2/HO-1 signaling pathway. Heliyon, 2024, 10(5): e27644. doi: 10.1016/j.heliyon.2024.e27644.
|
41. |
Qiu C, Li Z, Peng P. Human umbilical cord mesenchymal stem cells protect MC3T3-E1 osteoblasts from dexamethasone-induced apoptosis via induction of the Nrf2-ARE signaling pathway. Regen Ther, 2024, 27: 1-11.
|
42. |
He G, Zhang Y, Feng Y, et al. SBFI26 induces triple-negative breast cancer cells ferroptosis via lipid peroxidation. J Cell Mol Med, 2024, 28(7): e18212. doi: 10.1111/jcmm.18212.
|
43. |
Kerns JM, Walter JS, Patetta MJ, et al. Histological assessment of wallerian degeneration of the rat tibial nerve following crush and transection injuries. J Reconstr Microsurg, 2021, 37(5): 391-404.
|
44. |
Kong YF, Shi W, Zhang DZ, et al. Injectable, antioxidative, and neurotrophic factor-deliverable hydrogel for peripheral nerve regeneration and neuropathic pain relief. Applied Materials Today, 2021, 24: 156. doi: 10.1016/j.apmt.2021.101090.
|