1. |
Holzer LA, Leithner A, Holzer G. Surgery versus physical therapy for meniscal tear and osteoarthritis. N Engl J Med, 2013, 369(7): 677. doi: 10.1056/NEJMc1307177.
|
2. |
Jiang D, Zhang ZZ, Zhao F, et al. The radiated deep-frozen xenogenic meniscal tissue regenerated the total meniscus with chondroprotection. Sci Rep, 2018, 8(1): 9041. doi: 10.1038/s41598-018-27016-w.
|
3. |
Barceló X, Eichholz K, Gonçalves I, et al. Bioprinting of scaled-up meniscal grafts by spatially patterning phenotypically distinct meniscus progenitor cells within melt electrowritten scaffolds. Biofabrication, 2023, 16(1). doi: 10.1088/1758-5090/ad0ab9.
|
4. |
Li M, Yin H, Chen M, et al. STS loaded PCL-MECM based hydrogel hybrid scaffolds promote meniscal regeneration via modulating macrophage phenotype polarization. Biomater Sci, 2023, 11(8): 2759-2774.
|
5. |
Chen M, Feng Z, Guo W, et al. PCL-MECM-based hydrogel hybrid scaffolds and meniscal fibrochondrocytes promote whole meniscus regeneration in a rabbit meniscectomy model. ACS Appl Mater Interfaces, 2019, 11(44): 41626-41639.
|
6. |
Noh S, Jin YJ, Shin DI, et al. Selective extracellular matrix guided mesenchymal stem cell self-aggregate engineering for replication of meniscal zonal tissue gradient in a porcine meniscectomy model. Adv Healthc Mater, 2023, 12(27): e2301180. doi: 10.1002/adhm.202301180.
|
7. |
Zhu M, Li W, Dong X, et al. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nat Commun, 2019, 10(1): 4620. doi: 10.1038/s41467-019-12545-3.
|
8. |
Kim MK, Jeong W, Lee SM, et al. Decellularized extracellular matrix-based bio-ink with enhanced 3D printability and mechanical properties. Biofabrication, 2020, 12(2): 025003. doi: 10.1088/1758-5090/ab5d80.
|
9. |
Jian Z, Zhuang T, Qinyu T, et al. 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact Mater, 2020, 6(6): 1711-1726.
|
10. |
Liu L, Xiong Z, Yan Y, et al. Porous morphology, porosity, mechanical properties of poly (alpha-hydroxy acid)-tricalcium phosphate composite scaffolds fabricated by low-temperature deposition. J Biomed Mater Res A, 2007, 82(3): 618-629.
|
11. |
Sun T, Wang J, Huang H, et al. Low-temperature deposition manufacturing technology: a novel 3D printing method for bone scaffolds. Front Bioeng Biotechnol, 2023, 11: 1222102. doi: 10.3389/fbioe.2023.1222102.
|
12. |
Chen M, Li Y, Liu S, et al. Hierarchical macro-microporous WPU-ECM scaffolds combined with microfracture promote in situ articular cartilage regeneration in rabbits. Bioact Mater, 2020, 6(7): 1932-1944.
|
13. |
Sun X, Zhu Y, Yin HY, et al. Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: potential advantage of cellular transient memory function. Stem Cell Res Ther, 2018, 9(1): 133. doi: 10.1186/s13287-018-0884-3.
|
14. |
Liu L, Xian Y, Wang W, et al. Meniscus-inspired self-lubricating and friction-responsive hydrogels for protecting articular cartilage and improving exercise. ACS Nano, 2023, 17(23): 24308-24319.
|
15. |
Kwon H, Brown WE, Lee CA, et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol, 2019, 15(9): 550-570.
|
16. |
Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials, 2011, 32(30): 7411-7431.
|
17. |
Liu W, Wang D, Huang J, et al. Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 2): 976-982.
|
18. |
Lian M, Sun B, Han Y, et al. A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration. Biomaterials, 2021, 274: 120841. doi: 10.1016/j.biomaterials.2021.120841.
|
19. |
Sun T, Meng C, Ding Q, et al. In situ bone regeneration with sequential delivery of aptamer and BMP2 from an ECM-based scaffold fabricated by cryogenic free-form extrusion. Bioact Mater, 2021, 6(11): 4163-4175.
|
20. |
Li N, Guo R, Zhang ZJ. Bioink formulations for bone tissue regeneration. Front Bioeng Biotechnol, 2021, 9: 630488. doi: 10.3389/fbioe.2021.630488.
|
21. |
Zhao L, Zhou Y, Zhang J, et al. Natural polymer-based hydrogels: from polymer to biomedical applications. Pharmaceutics, 2023, 15(10): 2514. doi: 10.3390/pharmaceutics15102514.
|
22. |
Nam SY, Park SH. ECM based bioink for tissue mimetic 3D bioprinting. Adv Exp Med Biol, 2018, 1064: 335-353.
|
23. |
Jung CS, Kim BK, Lee J, et al. Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng Regen Med, 2017, 15(2): 155-162.
|
24. |
陈明学, 郭维民, 沈师, 等. 半月板细胞外基质-海藻酸水凝胶的制备及其对半月板细胞的影响. 中国医药生物技术, 2017, 12(6): 505-512.
|
25. |
Dai P, Zou T, Zhao W, et al. Short-term transplantation effect of a tissue-engineered meniscus constructed using drilled allogeneic acellular meniscus and BMSCs. Front Vet Sci, 2023, 10: 1266018. doi: 10.3389/fvets.2023.1266018.
|
26. |
Yuan Z, Liu S, Hao C, et al. AMECM/DCB scaffold prompts successful total meniscus reconstruction in a rabbit total meniscectomy model. Biomaterials, 2016, 111: 13-26.
|
27. |
Zhou Y, Hu J, Li B, et al. Towards the clinical translation of 3D PLGA/β-TCP/Mg composite scaffold for cranial bone regeneration. Materials (Basel), 2024, 17(2): 352. doi: 10.3390/ma17020352.
|