1. |
Horesh EJ, Chéret J, Paus R. Growth hormone and the human hair follicle. Int J Mol Sci, 2021, 22(24): 13205. doi: 10.3390/ijms222413205.
|
2. |
Zhang B, Chen T. Local and systemic mechanisms that control the hair follicle stem cell niche. Nat Rev Mol Cell Biol, 2024, 25(2): 87-100.
|
3. |
Zwick RK, Guerrero-Juarez CF, Horsley V, et al. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab, 2018, 27(1): 68-83.
|
4. |
Harper RA, Grove G. Human skin fibroblasts derived from papillary and reticular dermis: differences in growth potential in vitro. Science, 1979, 204(4392): 526-527.
|
5. |
Woodley DT. Distinct fibroblasts in the papillary and reticular dermis: Implications for wound healing. Dermatol Clin, 2017, 35(1): 95-100.
|
6. |
Plikus MV, Chuong CM. Macroenvironmental regulation of hair cycling and collective regenerative behavior. Cold Spring Harb Perspect Med, 2014, 4(1): a015198. doi: 10.1101/cshperspect.a015198.
|
7. |
Ostman J, Arner P, Engfeldt P, et al. Regional differences in the control of lipolysis in human adipose tissue. Metabolism, 1979, 28(12): 1198-1205.
|
8. |
Smith SR, Lovejoy JC, Greenway F, et al. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism, 2001, 50(4): 425-435.
|
9. |
Miyazaki Y, Glass L, Triplitt C, et al. Abdominal fat distribution and peripheral and hepatic insulin resistance in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab, 2002, 283(6): E1135-E1143.
|
10. |
Walker GE, Verti B, Marzullo P, et al. Deep subcutaneous adipose tissue: a distinct abdominal adipose depot. Obesity (Silver Spring), 2007, 15(8): 1933-1943.
|
11. |
Guo Y, Hu Z, Chen J, et al. Feasibility of adipose-derived therapies for hair regeneration: Insights based on signaling interplay and clinical overview. J Am Acad Dermatol, 2023, 89(4): 784-794.
|
12. |
Festa E, Fretz J, Berry R, et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell, 2011, 146(5): 761-771.
|
13. |
Greco V, Chen T, Rendl M, et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell, 2009, 4(2): 155-169.
|
14. |
Hsu YC, Pasolli HA, Fuchs E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell, 2011, 144(1): 92-105.
|
15. |
Chase HB, Montagna W, Malone JD. Changes in the skin in relation to the hair growth cycle. Anat Rec, 1953, 116(1): 75-81.
|
16. |
Wojciechowicz K, Gledhill K, Ambler CA, et al. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4. PLoS One, 2013, 8(3): e59811. doi: 10.1371/journal.pone.0059811.
|
17. |
Wojciechowicz K, Markiewicz E, Jahoda CA. C/EBPalpha identifies differentiating preadipocytes around hair follicles in foetal and neonatal rat and mouse skin. Exp Dermatol, 2008, 17(8): 675-680.
|
18. |
Schmidt B, Horsley V. Unravelling hair follicle-adipocyte communication. Exp Dermatol, 2012, 21(11): 827-830.
|
19. |
Kruglikov IL, Scherer PE. Dermal adipocytes: From irrelevance to metabolic targets? Trends Endocrinol Metab, 2016, 27(1): 1-10.
|
20. |
Guerrero-Juarez CF, Plikus MV. Emerging nonmetabolic functions of skin fat. Nat Rev Endocrinol, 2018, 14(3): 163-173.
|
21. |
Stuzin JM, Wagstrom L, Kawamoto HK, et al. The anatomy and clinical applications of the buccal fat pad. Plast Reconstr Surg, 1990, 85(1): 29-37.
|
22. |
Lin KK, Chudova D, Hatfield GW, et al. Identification of hair cycle-associated genes from time-course gene expression profile data by using replicate variance. Proc Natl Acad Sci U S A, 2004, 101(45): 15955-15960.
|
23. |
Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev, 2001, 81(1): 449-494.
|
24. |
Mathur SK, Doke AM, Sadana A. Identification of hair cycle-associated genes from time-course gene expression profile using fractal analysis. Int J Bioinform Res Appl, 2006, 2(3): 249-258.
|
25. |
Chase HB. Growth of the hair. Physiol Rev, 1954, 34(1): 113-126.
|
26. |
Zhang B, Tsai PC, Gonzalez-Celeiro M, et al. Hair follicles’ transit-amplifying cells govern concurrent dermal adipocyte production through Sonic Hedgehog. Genes Dev, 2016, 30(20): 2325-2338.
|
27. |
Pyrina I, Chung KJ, Michailidou Z, et al. Fate of adipose progenitor cells in obesity-related chronic inflammation. Front Cell Dev Biol, 2020, 8: 644. doi: 10.3389/fcell.2020.00644.
|
28. |
Haylett WL, Ferris WF. Adipocyte-progenitor cell communication that influences adipogenesis. Cell Mol Life Sci, 2020, 77(1): 115-128.
|
29. |
Cho DS, Lee B, Doles JD. Refining the adipose progenitor cell landscape in healthy and obese visceral adipose tissue using single-cell gene expression profiling. Life Sci Alliance, 2019, 2(6): e201900561. doi: 10.26508/lsa.201900561.
|
30. |
Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell, 2008, 135(2): 240-249.
|
31. |
Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res, 2012, 53(2): 227-246.
|
32. |
Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell, 2007, 131(2): 242-256.
|
33. |
Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol, 2011, 12(11): 722-734.
|
34. |
Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. J Cell Biol, 2015, 208(5): 501-512.
|
35. |
Rivera-Gonzalez GC, Shook BA, Andrae J, et al. Skin adipocyte stem cell self-renewal is regulated by a PDGFA/AKT-signaling axis. Cell Stem Cell, 2016, 19(6): 738-751.
|
36. |
Sardella C, Winkler C, Quignodon L, et al. Delayed hair follicle morphogenesis and hair follicle dystrophy in a lipoatrophy mouse model of pparg total deletion. J Invest Dermatol, 2018, 138(3): 500-510.
|
37. |
Nicu C, O’Sullivan JDB, Ramos R, et al. Dermal adipose tissue secretes HGF to promote human hair growth and pigmentation. J Invest Dermatol, 2021, 141(7): 1633-1645.
|
38. |
Tripurani SK, Wang Y, Fan YX, et al. Suppression of Wnt/β-catenin signaling by EGF receptor is required for hair follicle development. Mol Biol Cell, 2018, 29(22): 2784-2799.
|
39. |
Wu J, Yang Q, Wu S, et al. Adipose-derived stem cell exosomes promoted hair regeneration. Tissue Eng Regen Med, 2021, 18(4): 685-691.
|
40. |
Kruglikov IL, Zhang Z, Scherer PE. The role of immature and mature adipocytes in hair cycling. Trends Endocrinol Metab, 2019, 30(2): 93-105.
|
41. |
Plikus MV, Mayer JA, de la Cruz D, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature, 2008, 451(7176): 340-344.
|
42. |
Sunkara RR, Mehta D, Sarate RM, et al. BMP-AKT-GSK3β signaling restores hair follicle stem cells decrease associated with loss of Sfrp1. Stem Cells, 2022, 40(9): 802-817.
|
43. |
Higgins CA, Petukhova L, Harel S, et al. FGF5 is a crucial regulator of hair length in humans. Proc Natl Acad Sci U S A, 2014, 111(29): 10648-10653.
|
44. |
Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Curr Biol, 2009, 19(3): R132-R142.
|
45. |
Morinaga H, Mohri Y, Grachtchouk M, et al. Obesity accelerates hair thinning by stem cell-centric converging mechanisms. Nature, 2021, 595(7866): 266-271.
|
46. |
Sanders JM, Coscia BJ, Fonari A, et al. Exploring the effects of wetting and free fatty acid deposition on an atomistic hair fiber surface model incorporating keratin-associated protein 5-1. Langmuir, 2023, 9(15): 5263-5274.
|
47. |
Kruglikov IL, Zhang Z, Scherer PE. Phenotypical conversions of dermal adipocytes as pathophysiological steps in inflammatory cutaneous disorders. Int J Mol Sci, 2022, 23(7): 3828. doi: 10.3390/ijms23073828.
|
48. |
Foitzik K, Lindner G, Mueller-Roever S, et al. Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo. FASEB J, 2000, 14(5): 752-760.
|
49. |
Tasaki N, Minematsu T, Mugita Y, et al. Telogen elongation in the hair cycle of ob/ob mice. Biosci Biotechnol Biochem, 2016, 80(1): 74-79.
|
50. |
Bielczyk-Maczynska E. White adipocyte plasticity in physiology and disease. Cells, 2019, 8(12): 1507. doi: 10.3390/cells8121507.
|
51. |
Marangoni RG, Korman BD, Wei J, et al. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol, 2015, 67(4): 1062-1073.
|
52. |
Eichmüller S, van der Veen C, Moll I, et al. Clusters of perifollicular macrophages in normal murine skin: physiological degeneration of selected hair follicles by programmed organ deletion. J Histochem Cytochem, 1998, 46(3): 361-370.
|
53. |
Bowers RR, Lane MD. Wnt signaling and adipocyte lineage commitment. Cell Cycle, 2008, 7(9): 1191-1196.
|
54. |
Plikus MV, Guerrero-Juarez CF, Ito M, et al. Regeneration of fat cells from myofibroblasts during wound healing. Science, 2017, 355(6326): 748-752.
|
55. |
Hu XM, Li ZX, Zhang DY, et al. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther, 2021, 12(1): 453. doi: 10.1186/s13287-021-02527-y.
|
56. |
Kandyba E, Leung Y, Chen YB, et al. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. Proc Natl Acad Sci U S A, 2013, 110(4): 1351-1356.
|
57. |
Lei M, Lai X, Bai X, et al. Prolonged overexpression of Wnt10b induces epidermal keratinocyte transformation through activating EGF pathway. Histochem Cell Biol, 2015, 144(3): 209-221.
|
58. |
Li YH, Zhang K, Yang K, et al. Adenovirus-mediated Wnt10b overexpression induces hair follicle regeneration. J Invest Dermatol, 2013, 133(1): 42-48.
|
59. |
Hsu YC, Li L, Fuchs E. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell, 2014, 157(4): 935-949.
|
60. |
Carballo GB, Honorato JR, de Lopes GPF, et al. A highlight on Sonic hedgehog pathway. Cell Commun Signal, 2018, 16(1): 11. doi: 10.1186/s12964-018-0220-7.
|
61. |
Jeng KS, Chang CF, Lin SS. Sonic Hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int J Mol Sci, 2020, 21(3): 758. doi: 10.3390/ijms21030758.
|
62. |
Shao M, Hepler C, Vishvanath L, et al. Fetal development of subcutaneous white adipose tissue is dependent on Zfp423. Mol Metab, 2016, 6(1): 111-124.
|
63. |
Li SN, Wu JF. TGF-β/SMAD signaling regulation of mesenchymal stem cells in adipocyte commitment. Stem Cell Res Ther, 2020, 11(1): 41. doi: 10.1186/s13287-020-1552-y.
|
64. |
Bowers RR, Kim JW, Otto TC, et al. Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proc Natl Acad Sci U S A, 2006, 103(35): 13022-13027.
|
65. |
Infarinato NR, Stewart KS, Yang Y, et al. BMP signaling: at the gate between activated melanocyte stem cells and differentiation. Genes Dev, 2020, 34(23-24): 1713-1734.
|
66. |
Genander M, Cook PJ, Ramsköld D, et al. BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell Stem Cell, 2014, 15(5): 619-633.
|
67. |
Ge M, Liu C, Li L, et al. miR-29a/b1 inhibits hair follicle stem cell lineage progression by spatiotemporally suppressing WNT and BMP signaling. Cell Rep, 2019, 29(8): 2489-2504.
|
68. |
Finer, N. Medical consequences of obesity. Medicine, 2015, 43: 88-93.
|
69. |
Ahdjoudj S, Kaabeche K, Holy X, et al. Transforming growth factor-beta inhibits CCAAT/enhancer-binding protein expression and PPARgamma activity in unloaded bone marrow stromal cells. Exp Cell Res, 2005, 303(1): 138-147.
|
70. |
Schmidt FM, Weschenfelder J, Sander C, et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS One, 2015, 10(3): e0121971. doi: 10.1371/journal.pone.0121971.
|
71. |
de Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem, 2008, 54(6): 945-955.
|
72. |
Abe Y, Tanaka N. Roles of the Hedgehog signaling pathway in epidermal and hair follicle development, homeostasis, and cancer. J Dev Biol, 2017, 5(4): 12. doi: 10.3390/jdb5040012.
|
73. |
Andl T, Ahn K, Kairo A, et al. Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development, 2004, 131(10): 2257-2268.
|