1. |
Huang Y, Huang X, Li K, et al. Risk factors of isolated microtia: a systematic review and meta-analysis. Plast Reconstr Surg, 2023, 151(4): 651e-663e.
|
2. |
Xu Z, Li Y, Li D, et al. Strategies for ear elevation and the treatment of relevant complications in autologous cartilage microtia reconstruction. Sci Rep, 2022, 12(1): 13536. doi: 10.1038/s41598-022-17007-3.
|
3. |
Lee DJ, Kwon J, Kim YI, et al. Coating Medpor® implant with tissue-engineered elastic cartilage. J Funct Biomater, 2020, 11(2): 34. doi: 10.3390/jfb11020034.
|
4. |
Enomura M, Murata S, Terado Y, et al. Development of a method for scaffold-free elastic cartilage creation. Int J Mol Sci, 2020, 21(22): 8496. doi: 10.3390/ijms21228496.
|
5. |
Brennan JR, Cornett A, Chang B, et al. Preclinical assessment of clinically streamlined, 3D-printed, biocompatible single- and two-stage tissue scaffolds for ear reconstruction. J Biomed Mater Res B Appl Biomater, 2021, 109(3): 394-400.
|
6. |
Mohamed EN, Elshahat A, Hany HE, et al. Segmentation of the 3D printed mirror image auricular model to ease sculpture of the costal cartilages in total auricular aesthetic reconstruction. Asian J Surg, 2023, 46(12): 5429-5437.
|
7. |
Nandra N, Jovic TH, Ali SR, et al. Models and materials for teaching auricular framework carving: A systematic review. J Plast Reconstr Aesthet Surg, 2023, 87: 98-108.
|
8. |
Zhao T, Liu Y, Wu Y, et al. Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges. Biotechnol Adv, 2023, 69: 108243. doi: 10.1016/j.biotechadv.2023.108243.
|
9. |
McMillan A, McMillan N, Gupta N, et al. 3D bioprinting in otolaryngology: a review. Adv Healthc Mater, 2023, 12(19): e2203268. doi: 10.1002/adhm.202203268.
|
10. |
Placone JK, Engler AJ. Recent advances in extrusion-based 3D printing for biomedical applications. Adv Healthc Mater, 2018, 7(8): e1701161. doi: 10.1002/adhm.201701161.
|
11. |
Gillispie G, Prim P, Copus J, et al. Assessment methodologies for extrusion-based bioink printability. Biofabrication, 2020, 12(2): 022003. doi: 10.1088/1758-5090/ab6f0d.
|
12. |
Shiwarski DJ, Hudson AR, Tashman JW, et al. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioeng, 2021, 5(1): 010904. doi: 10.1063/5.0032777.
|
13. |
Ji Y, Yang Q, Huang G, et al. Improved resolution and fidelity of droplet-based bioprinting by upward ejection. ACS Biomater Sci Eng, 2019, 5(8): 4112-4121.
|
14. |
Kotlarz M, Ferreira AM, Gentile P, et al. Droplet-based bioprinting enables the fabrication of cell-hydrogel-microfibre composite tissue precursors. Bio-Des Manuf, 2022, 5: 512-528.
|
15. |
Vitalis C, Wenzel T. Leveraging interactions in microfluidic droplets for enhanced biotechnology screens. Curr Opin Biotechnol, 2023, 82: 102966. doi: 10.1016/j.copbio.2023.102966.
|
16. |
Hossain Rakin R, Kumar H, Rajeev A, et al. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Biofabrication, 2021, 13(4). doi: 10.1088/1758-5090/ac25cb.
|
17. |
Mondschein RJ, Kanitkar A, Williams CB, et al. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials, 2017, 140: 170-188.
|
18. |
Kérourédan O, Hakobyan D, Rémy M, et al. In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration. Biofabrication, 2019, 11(4): 045002. doi: 10.1088/1758-5090/ab2620.
|
19. |
Zhang M, Xu C, Jiang L, et al. A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicol Res (Camb), 2018, 7(6): 1048-1060.
|
20. |
Douillet C, Nicodeme M, Hermant L, et al. From local to global matrix organization by fibroblasts: a 4D laser-assisted bioprinting approach. Biofabrication, 2022, 14(2). doi: 10.1088/17585090/ac40ed.
|
21. |
Kim HY, Jung SY, Lee SJ, et al. Fabrication and characterization of 3D-printed elastic auricular scaffolds: A pilot study. Laryngoscope, 2019, 129(2): 351-357.
|
22. |
Tang P, Song P, Peng Z, et al. Chondrocyte-laden GelMA hydrogel combined with 3D printed PLA scaffolds for auricle regeneration. Mater Sci Eng C Mater Biol Appl, 2021, 130: 112423. doi: 10.1016/j.msec.2021.112423.
|
23. |
Xie ZT, Zeng J, Kang DH, et al. 3D printing of collagen scaffold with enhanced resolution in a citrate-modulated gellan gum microgel bath. Adv Healthc Mater, 2023, 12(27): e2301090. doi: 10.1002/adhm.202301090.
|
24. |
Chang B, Cornett A, Nourmohammadi Z, et al. Hybrid three-dimensional-printed ear tissue scaffold with autologous cartilage mitigates soft tissue complications. Laryngoscope, 2021, 131(5): 1008-1015.
|
25. |
Wang H, Zhang J, Liu H, et al. Chondrocyte-laden gelatin/sodium alginate hydrogel integrating 3D printed PU scaffold for auricular cartilage reconstruction. Int J Biol Macromol, 2023, 253(Pt 1): 126294. doi: 10.1016/j.ijbiomac.2023.126294.
|
26. |
Otto IA, Capendale PE, Garcia JP, et al. Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities. Mater Today Bio, 2021, 9: 100094. doi: 10.1016/j.mtbio.2021.100094.
|
27. |
Hassan TA, Maher MA, El Karmoty AF, et al. Auricular cartilage regeneration using different types of mesenchymal stem cells in rabbits. Biol Res, 2022, 55(1): 40. doi: 10.1186/s40659-022-00408-z.
|
28. |
Posniak S, Chung JHY, Liu X, et al. Bioprinting of chondrocyte stem cell co-cultures for auricular cartilage regeneration. ACS Omega, 2022, 7(7): 5908-5920.
|
29. |
Landau S, Szklanny AA, Machour M, et al. Human-engineered auricular reconstruction (hEAR) by 3D-printed molding with human-derived auricular and costal chondrocytes and adipose-derived mesenchymal stem cells. Biofabrication, 2021, 14(1). doi: 10.1088/1758-5090/ac3b91.
|
30. |
Jang CH, Koo Y, Kim G. ASC/chondrocyte-laden alginate hydrogel/PCL hybrid scaffold fabricated using 3D printing for auricle regeneration. Carbohydr Polym, 2020, 248: 116776. doi: 10.1016/j.carbpol.2020.116776.
|
31. |
Neufurth M, Wang S, Schröder HC, et al. 3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink. Biofabrication, 2021, 14(1). doi: 10.1088/1758-5090/ac3f29.
|
32. |
Jakob Y, Kern J, Gvaramia D, et al. Suitability of ex vivo-expanded microtic perichondrocytes for auricular reconstruction. Cells, 2024, 13(2): 141. doi: 10.3390/cells13020141.
|
33. |
Wei X, Zhou W, Tang Z, et al. Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis. Bioact Mater, 2023, 20: 16-28.
|
34. |
Lee HA, Park E, Lee H. Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST. Adv Mater, 2020, 32(35): e1907505. doi: 10.1002/adma.201907505.
|
35. |
Yin J, Zhong J, Wang J, et al. 3D-printed high-density polyethylene scaffolds with bioactive and antibacterial layer-by-layer modification for auricle reconstruction. Mater Today Bio, 2022, 16: 100361. doi: 10.1016/j.mtbio.2022.100361.
|
36. |
Xie X, Wu S, Mou S, et al. Microtissue-based bioink as a chondrocyte microshelter for DLP bioprinting. Adv Healthc Mater, 2022, 11(22): e2201877. doi: 10.1002/adhm.202201877.
|
37. |
Huang B, Li P, Chen M, et al. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. J Nanobiotechnology, 2022, 20(1): 25. doi: 10.1186/s12951-021-01230-7.
|
38. |
Zeng J, Jia L, Wang D, et al. Bacterial nanocellulose-reinforced gelatin methacryloyl hydrogel enhances biomechanical property and glycosaminoglycan content of 3D-bioprinted cartilage. Int J Bioprint, 2022, 9(1): 631. doi: 10.18063/ijb.v9i1.631.
|
39. |
Bhamare N, Tardalkar K, Parulekar P, et al. 3D printing of human ear pinna using cartilage specific ink. Biomed Mater, 2021, 16(5). doi: 10.1088/1748-605X/ac15b0.
|
40. |
Jia L, Hua Y, Zeng J, et al. Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix. Bioact Mater, 2022, 16: 66-81.
|
41. |
Visscher DO, Lee H, van Zuijlen PPM, et al. A photo-crosslinkable cartilage-derived extracellular matrix bioink for auricular cartilage tissue engineering. Acta Biomater, 2021, 121: 193-203.
|
42. |
Nam GH, Choi Y, Kim GB, et al. Emerging prospects of exosomes for cancer treatment: from conventional therapy to immunotherapy. Adv Mater, 2020, 32(51): e2002440. doi: 10.1002/adma.202002440.
|
43. |
Guo R, Fan J. Extracellular vesicles derived from auricular chondrocytes facilitate cartilage differentiation of adipose-derived mesenchymal stem cells. Aesthetic Plast Surg, 2023, 47(6): 2823-2832.
|
44. |
Chen J, Huang T, Liu R, et al. Congenital microtia patients: the genetically engineered exosomes released from porous gelatin methacryloyl hydrogel for downstream small RNA profiling, functional modulation of microtia chondrocytes and tissue-engineered ear cartilage regeneration. J Nanobiotechnology, 2022, 20(1): 164. doi: 10.1186/s12951-022-01352-6.
|